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Abstract

This article explores the view that computational models of cognition may constitute valid theories of cognition, often in the full sense
of the term ‘‘theory”. In this discussion, this article examines various (existent or possible) positions on this issue and argues in favor of
the view above. It also connects this issue with a number of other relevant issues, such as the general relationship between theory and
data, the validation of models, and the practical benefits of computational modeling. All the discussions point to the position that com-
putational cognitive models can be true theories of cognition.
� 2008 Elsevier B.V. All rights reserved.
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1 Examples of verbal–conceptual theories may include Gestalt psychol-
ogy, Freudian psychology, Maslow’s theory of human needs, or the drive
1. Introduction

With the increasing use of computational cognitive
modeling and simulation in cognitive science, the theoreti-
cal and methodological status of computational cognitive
modeling and simulation needs to be better understood.
Despite some significant and intriguing computational cog-
nitive modeling work in the past (see, e.g., Anderson &
Lebiere, 1998; Meyer & Kieras, 1997; Sun, Merrill, &
Peterson, 2001), larger methodological questions concern-
ing such work remain. They are becoming more acute,
given the steadily growing interest in computational cogni-
tive modeling. For example, whether computational mod-
eling/simulation is a viable means for providing scientific
theories in general, and for cognitive science in particular,
is an important question to consider. Furthermore, if it is a
viable way of constructing and expressing scientific theo-
ries, how exactly is it to be used to produce scientific theo-
ries in cognitive science? What is its relationship with
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verbal–conceptual theories of cognition1 or with mathe-
matical theories of cognition? What is its relationship with
data and observations that a scientific theory is supposed
to explain (e.g., those produced by cognitive psychology
or social psychology)? And so on (for similar or related
issues, see also Durkheim, 1962; Kuhn, 1970; Newell,
1973; Poincare, 1982; Suppe, 1977; van Fraassen, 1980).2

Some believe that computational modeling/simulation
does not explain anything per se, but (at most) confirms
pre-existing general verbal–conceptual theories. Some fur-
ther claim that simulations are built on top of pre-existing
theories, and they may act as tests of those theories, but not
in a truly significant way. This is because, they claim, sim-
ulation may not really validate a theory, but only perhaps
help to falsify it sometimes, in case a narrowly-scoped the-
theory of animal motivation.
2 Here, ‘‘theory” is a rather fluid notion — it mostly involves an account

of a set of phenomena (in some form) in terms of the productions and/or
the regularities of these phenomena. On the other hand, the notion of
‘‘explanation” here involves the application of a theory to describe
phenomena (so, it is derived from the notion of ‘‘theory”).
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ory and a correspondingly narrowly-scoped computational
model are involved. Or this is because simulation may not
help to falsify much, due to the generality, in case a
broadly-scoped cognitive architecture is involved (e.g.,
Anderson & Lebiere, 1998). Moreover, if computational
modeling/simulation is to have any bearing on a general
verbal–conceptual theory (such as revealing inconsisten-
cies, or providing empirical support), it must be logically
derived from the theory. This requirement is believed by
some to pose an almost insurmountable difficulty (as will
be explicated later).

These issues deserve some further considerations. In this
paper, I would like to discuss these issues, and a myriad of
positions associated with them, in relation to the theoreti-
cal and methodological status of computational cognitive
modeling and simulation. These issues are highly signifi-
cant for the future development of computational cognitive
modeling – which may lead up to a ‘‘computational psy-
chology” (in the same way as some better-established com-
putational fields such as computational biology). To
benefit such future developments, it is highly desirable to
establish that computational cognitive models are them-
selves cognitive theories.

In the remainder of this paper, first computational
cognitive modeling in general is sketched. Next, the use
of computational cognitive architectures in particular is
touched upon in the context of computational cognitive
modeling. Then, various positions concerning the nature
of scientific theories are outlined. On the basis of such
background, a number of positions concerning the theo-
retical and methodological status of computational cogni-
tive modeling are explored in the subsequent section.
Some unifying perspectives on different types of theories
are then presented. From these perspectives, it is argued
that the position that computational cognitive models
may themselves be cognitive theories is well supported.
Next, the practical value of computational cognitive
modeling is accentuated, in terms of both precision and
expressiveness, which further supports the position that
computational cognitive models may themselves be cogni-
tive theories.

2. Computational cognitive modeling

Before jumping into a discussion of the theoretical sta-
tus, the explanatory utility, and the significance of compu-
tational cognitive modeling, a brief look at what it is and
how it came about is in order.

Computational cognitive modeling provides detailed
descriptions of mechanisms (i.e., static aspects) and pro-
cesses (i.e., dynamic aspects) of cognition (Luce, 1995;
Machamer, Darden, & Craver, 2000). It embodies descrip-
tions of cognition in algorithms and programs, based on
the science and technology of computing (Turing, 1950).
That is, it produces runnable computational models.
Detailed simulations can then be conducted based on the
runnable computational models. Right from the official
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beginning of cognitive science around late 1970’s, compu-
tational modeling has been a mainstay of cognitive science.

From Schank and Abelson (1977) to Minsky (1981), a
variety of symbolic ‘‘cognitive” models were proposed in
Artificial Intelligence. They were usually broad and capable
of a significant amount of ‘‘cognitive” information process-
ing. However, they were usually not rigorously evaluated
against human data. Therefore, the cognitive validity of
many of these models was not clearly established. Psychol-
ogists have also been proposing computational cognitive
models, which were usually narrower in terms of scope
and coverage. For instance, an early example was
Anderson’s HAM (Anderson, 1983). These models were
usually more rigorously evaluated in relation to human
data. Many of such models were inspired by symbolic AI
work mentioned above (Newell & Simon, 1976).

The resurgence of neural network models in the early
80’s brought another type of computational model into
prominence in this field (e.g., Rumelhart et al., 1986).
Instead of symbolic models that rely on a variety of com-
plex data structures that store highly structured pieces of
knowledge (such as Schank’s Scripts or Minsky’s Frames),
simple, uniform, and often massively parallel numerical
computation was used in these neural network models
(Rumelhart et al., 1986). Many of these models were meant
to be rigorous models of human cognition, and they were
evaluated in relation to human data in a quantitative way
(but see also Massaro, 1988).

Hybrid models that combine the strengths of neural net-
works and symbolic models emerged in the early 90’s (see,
e.g., Sun & Bookman, 1994; Wermter & Sun, 2000). Such
models might be used to model a wider variety of cognitive
phenomena due to their more diverse and more expressive
representations (but see Regier, 2003). They have been used
to tackle a wide range of cognitive data, often (though not
always) in a rigorous way (see, e.g., Sun and Bookman,
1994; Sun, 2002).

Computational models can correspond to (i.e., match)
actual human data in a variety of ways and can thereby
be validated (at least theoretically). Computational cogni-
tive models can be either broad or narrow (either covering
a large set of data or being very specialized), precise or
imprecise, and descriptive or normative. There are at least
the following types of correspondences between computa-
tional models and human behaviors, in an increasing order
of precision (Sun & Ling, 1998):

� Behavioral outcome modeling: A computational model
produces roughly the same types of behaviors as
humans do, under roughly the same circumstances.
For example, given a set of scenarios for decision mak-
ing, a model makes roughly the same broad kinds of
decisions as a human decision maker.
� Qualitative modeling: A computational model produces

the same qualitative behaviors that characterize human
performance, under a variety of circumstances. For
example, the performance of human subjects improves/
computational cognitive modeling, Cognitive Systems Research
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deteriorates when one or more control variables are
changed; if a model shows the same changes given the
same manipulations, one may say that the model cap-
tures the human data qualitatively.
� Quantitative modeling: A computational model pro-

duces exactly the same quantitative behaviors as exhib-
ited by humans, as indicated by some quantitative
performance measures. For example, one can perform
point-by-point matching of the learning curve of a com-
putational model and that of humans, or one can match
step-by-step performance of a model with the corre-
sponding performance of humans.

Exploring the match between a model and human data
is an important means of understanding the human mind.
Obtaining a good fit is not as trivial a result as one might
believe. Finding a good fit often involves painstakingly
detailed work. Moreover, validation of internal mecha-
nisms and processes is even more difficult, which is a signif-
icant issue that is gaining increasing attention (e.g., Pew &
Mavor, 1998; see more discussions later in Section 7).

Computational models have had some successes in
terms of capturing and explaining a wide variety of cogni-
tive phenomena in one of the above three senses. It is not
an exaggeration to say that by now computational cogni-
tive modeling in fact constitutes computational psychology
as well as theoretical psychology (Newell, 1980, 1990; Sun,
2008). This is because developing a computational model
and matching it against empirical human data is an impor-
tant way of exploring human cognition. Finding a good fit
involves detailed explorations of mechanisms and processes
– the result is a detailed understanding of what affects per-
formance in what ways (Thagard, 1986). It is the psychol-
ogy that relies on computational model development as the
essential methodological approach. Hence it constitutes a
computational psychology (Sun, 2008). Computational
modeling contributes to general, theoretical understanding
of cognition through generating mechanistic and process-
based descriptions that match human data (Luce, 1995).
Therefore, it is also theoretical psychology – theorizing
about cognition with (or through) computational means.

3. Cognitive architectures in computational cognitive

modeling

One particularly important strand of computational
cognitive modeling work is based on ‘‘cognitive architec-
tures”, that is, broadly-scoped, domain-generic computa-
tional cognitive models focusing on essential structures,
mechanisms, and processes. They are used for broad,
cross-domain analysis of cognition (Newell, 1990; Sun,
2002). A cognitive architecture provides a concrete frame-
work for more detailed modeling of cognitive phenomena,
through specifying essential structures, divisions of mod-
ules, relations among modules, and a variety of other
essential aspects (Sun, 2002, 2004). They help to narrow
down possibilities (i.e., the space of possible models) and
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to provide scaffolding (i.e., essential structures), through
embodying fundamental theoretical assumptions (e.g.,
implicit versus explicit cognition, as in Sun (2002); see also
Pew & Mavor, 1998; Ritter et al., 2003).

A computational cognitive architecture carries with it a
set of structural (including ontological) assumptions, which
form the basis of the architecture. On top of that, more
detailed mechanisms and processes are specified for various
cognitive faculties, such as memory of various forms, learn-
ing, and decision making. These mechanisms and processes
are also the key elements of an architecture. These assump-
tions (structural, mechanistic, or process-based) represent a
theoretical commitment, the implications of which can then
be explored.3 In addition, some parameters may be speci-
fied uniformly a priori in a cognitive architecture, which
form a set of additional assumptions about cognition, on
top of structural, mechanistic, and process-based assump-
tions. The basic structural assumptions and the specifica-
tions of essential mechanisms and processes may lead to
the identifications of the values of many parameters, espe-
cially when these parameters have clear theoretical or
empirical interpretations. Beside that, empirical data may
provide a means for estimating values of other parameters
(on the basis of prior theoretical assumptions, of course).

Looking back into the history of ideas concerning the
architecture of the human mind, we see complementary
lines of thoughts and gradual development of details,
which led to the present-day computational cognitive
architectures. For example, Kant viewed the human mind
as a complex structure composed of innate faculties, and
these innate faculties are then fine tuned by experience
(as in, e.g., Anderson & Lebiere, 1998; Sun, 2002). Sig-
mund Freud focused attention on different subsystems of
the mind and their interactions (as in, e.g., Sun, 2002,
2003). Allen Newell advocated the very idea of computa-
tional ‘‘cognitive architecture”. One of the problems then
was that both cognitive science and AI became fragmented,
focusing mainly on specific issues, and lost sight of the big
picture. Newell (1980, 1990) discussed a set of essential
issues regarding architectures of the human mind, and
argued that the field could make better progress if it
addressed all of these issues together. This set of issues
serves as a useful guide in that it puts emphasis on broad
cognitive models that aim to capture general characteristics
of cognition. Sun (2004) proposed another, more up-to-
date and broader set of desiderata for developing generic
cognitive architectures (see Sun, 2004 for details).

As a specific example, SOAR (Rosenbloom, Laird, &
Newell, 1993) was a traditional symbolic representationalist
cognitive architecture based on Newell’s ideas. It attempted
to capture an array of cognitive phenomena using a unified
computational cognitive modeling, Cognitive Systems Research
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mechanism – search through a state space, as well as asso-
ciated explanation-based learning, based on elaborate sym-
bolic representations (Newell, 1980, 1990).

On the other hand, ACT-R (Anderson, 1983; Anderson
& Lebiere, 1998) has been the most influential and the most
successful cognitive architecture, especially when compared
with other symbolic representationalist models. ACT-R is
made up of a semantic network (for declarative knowledge)
and a production system (for procedural knowledge). Pro-
ductions are formed through ‘‘proceduralization” of
declarative knowledge, and have strengths associated with
them, which are used for firing. Production firing is based
on log odds of success. The essential point of ACT-R is
that, in learning, declarative knowledge is acquired first,
and then through practice, it is assimilated into procedural
knowledge. The architecture involves elaborate symbolic
(as well as numerical) representations.

Related in some ways to Anderson’s ideas, some others
(see, e.g., Albus, 1981; Sloman, 2000; Sun, 1999) divided
cognition into several levels: reactive processing, delibera-
tive processing, and reflective processing. In robotics, a
similar division exists, which often includes three levels:
the controller, the sequencer, and the deliberator. This divi-
sion has been proposed by many roboticians over the years
(see, e.g., Gat, 1998 for a review).

Along the same line, a more recent cognitive architec-
ture, CLARION (Sun, 2002, 2003; Sun et al., 2001)
employs two ‘‘levels” of representation, for capturing
implicit and explicit knowledge, respectively. These two
types of knowledge representations and their associated
learning (of the two different kinds) enable complex and
synergistic interaction between implicit and explicit cogni-
tive processes. Learning is essentially ‘‘bottom-up”, from
implicit, reactive learning to the learning of elaborate sym-
bolic conceptual structures, but it can go the other way
around too (‘‘top-down”). On top of these two kinds of
representations, there are also meta-level cognitive pro-
cesses and motivational processes (cf. Nelson, 1993).

The point of the foregoing discussion is that computa-
tional cognitive architectures make broad assumptions,
and yet leave many details open. The essential consider-
ations are often concerned with overall structural assump-
tions. Yet for practical reasons, a great deal of
computational details (concerning mechanisms and pro-
cesses) need to be specified. They need to be specified so
that computational cognitive architectures can be com-
pared to empirical data and be validated (among other
things). The details are usually filled in during the course
of the development of a cognitive architecture, through
theoretical, computational, and/or experimental work.

4. Nature of scientific theories

Let us review some existing theories regarding scientific
theories. First of all, according to scientific realism, prod-
uct of scientific research is knowledge of mind-independent
phenomena and such knowledge is possible even in those
Please cite this article in press as: Sun, R., Theoretical status of
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cases in which the relevant phenomena are not observable
(Kitcher & Salmon, 1989). It entails that an ideal scientific
theory makes true claims about genuinely existing unob-
servable entities. Realists believe that the operational suc-
cess of a scientific theory lends credence to the idea that
its unobservable aspects truly exist, as they were how the
theory derived its predictions.

In contrast, constructive empiricism (van Fraassen,
1980) claims that scientific theories aim to be empirically
adequate and their acceptance involves only the belief that
they are empirically adequate. A theory is empirically ade-
quate if everything that it says about observable entities is
true, that is, consistent with empirical observations.4 (Note
that this is the view on which I shall base my arguments
later.)

Against scientific realism, it has been argued that many
previously successful scientific theories achieved their pre-
dictive success through the postulation of entities that later,
even more successful theories showed did not exist. It thus
may be argued that we should expect for theories to be
replaced by newer ones that postulate a different set of
unobservables (theoretical entities). Viewed in this light,
scientific realism appears unjustified.

Relatedly, some have noted that data and observations
are often (if not always) dependent on theories (that is, they
are theory-laden; Kuhn, 1970). The fact that theories can
only be tested as they relate to other theories implies that
one can claim that test results that seem to refute a scien-
tific theory have not refuted that theory at all. Rather, it
is possible that the test results conflict with predictions
because some other theory is false. Given this indetermi-
nacy, scientific realism appears again unjustified.

Similarly, against scientific realism, social constructivists
point out that scientific realism is unable to account for the
rapid changes that occur in scientific knowledge during
periods of scientific revolution (Kuhn, 1970). According
to social constructivists, the success of scientific theories
is part of the social construction of knowledge, as opposed
to revealing some ‘‘objective” truth about reality as scien-
tific realism would claim (Kukla, 2000). (I shall return to
this issue of ‘‘construction” versus realism later in Section
7.)

The upshot, therefore, is that scientific realism should
not be taken for granted, and may not be a solid philosoph-
ical foundation for science in general and for computa-
tional cognitive modeling in particular. At a minimum,
we need to take into account its alternatives (such as con-
structive empiricism). Note that these issues are highly con-
troversial and far from being settled. I am not going into
computational cognitive modeling, Cognitive Systems Research
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details of these issues, because they are not the focus of the
present article. However, I do want to bring them up as the
background of what I will be discussing.

Relatedly, there are also differing views on the interpre-
tation of scientific theories. The linguistic view treats a sci-
entific theory as a set of linguistic statements that are used
to derive logical consequences (Hempel, 1965; Suppe,
1977). The semantic view, in contrast, treats a scientific the-
ory as implying a general picture of the relevant phenom-
ena – models of the relevant phenomena defined by all
their relevant dimensions and by all their possible configu-
rations across time (Suppe, 1977; van Fraassen, 1980). The
models may be based on set theory, state spaces, or some
other mathematical formalisms. It is important to note that
the notion of ‘‘model” in the semantic view (e.g.,
Cartwright, 1997; Giere, 2004; Morgan & Morrison,
1999) is generally not the same as that used in computa-
tional cognitive modeling. The former is a generic notion
that denotes some formal processes underlying interpreta-
tions of verbal–conceptual or mathematical scientific theo-
ries, while the latter is a specific notion denoting a type of
elaborately developed formal descriptions (that may be
coded as computer programs).5 In other words, while the
linguistic versus semantic distinction was concerned with
the interpretation of scientific theories, my main concern
here is instead the expression (the formalism) of scientific
theories.6

Turning to another related issue, I would like to high-
light Machamer et al. (2000)’s emphasis on the importance
of ‘‘mechanisms” in scientific theorizing (see also Bechtel &
Abrahamsen, 2005). According to Machamer et al. (2000),
‘‘in many fields of science what is taken to be a satisfactory
explanation requires a description of a mechanism. So it is
not surprising that much of the practice of science can be
understood in terms of the discovery and description of
mechanisms” (p. 1–2). ‘‘The contemporary mechanical
world view, among other things, is a conviction about
how phenomena are to be understood” (p. 21). To me at
least, it implies that mechanisms can be a legitimate part
of a scientific theory (or even a major part of a scientific
theory), based on which mechanistic explanations of phe-
nomena can be constructed.

In Machamer et al.’s use of the term, ‘‘mechanism”

includes both entities as well as activities involving entities
(i.e., including both static and dynamic aspects). Using the
common terms of cognitive science, their notion of ‘‘mech-
anism” involves both representations as well as cognitive
mechanisms and processes operating on them. Describing
such cognitive ‘‘mechanisms” is evidently the main objec-
5 However, see the later discussion (in Section 5) of the view of
computational models as instantiations of verbal–conceptual theories.

6 It should be recognized that the boundary between theory and model is
not clear-cut (even in the semantic view of scientific theories). Moreover,
there are no clear-cut and commonly accepted definitions of theory and
model that one can rely upon (Cartwright, 1997; Giere, 2004; Morgan &
Morrison, 1999).
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tive of cognitive science, and computational cognitive mod-
eling in particular. So Machamer et al.’s view is fully
compatible with the currently common and prevailing
practices in cognitive science and in computational cogni-
tive modeling.

In cognitive science, computational modeling is particu-
larly suitable for describing such ‘‘mechanisms” of cogni-
tion (Thagard, 1986), with all of their details, in a
constructive empiricist way (a la van Fraassen, 1980). Cog-
nitive representations can be easily translated into and
implemented in computer data structures, and cognitive
mechanisms and processes can be implemented through
computer algorithms. Any amount of detail of a ‘‘mecha-
nism” in Machamer et al.’s sense (provided that it is Turing
computable) can be described in an algorithm, while it may
not be the case that it can be described through mathemat-
ical equations (that is to say, algorithms are more
expressive). So, with the potentially huge amount of fine-
grained details that can be involved in cognitive processes
and mechanisms, computational modeling is especially
important in revealing mechanistic and process details
(albeit in a constructive empiricist way; more discussions
on this point later in Section 7), and thus it is an important
part of theoretical development in cognitive science. As
warned by Machamer et al. (2000), ‘‘we should not be
tempted to follow Hume and later logical empiricists into
thinking that the intelligibility of activities (or mechanisms)
is reducible to their regularity” (p. 21). ‘‘Rather, explana-
tion involves revealing the productive relation” (p. 22).
Similarly, Salmon (1998) pointed out that ‘‘What does
explanation offer, over and above the inferential capacity
of prediction and retrodiction....? It provides knowledge
of the mechanisms of production and propagation of struc-
ture in the world. That goes some distance beyond mere
recognition of regularities, and of the possibility of sub-
suming particular phenomena thereunder” (p. 29). See also
Bechtel and Abrahamsen (2005). Detailed accounts of pro-
duction are what is often provided by computational cog-
nitive modeling. Furthermore, it may be argued that
computational cognitive modeling revealing such ‘‘mecha-
nisms” and ‘‘production” can be an important part of cog-
nitive theories per se (as I shall argue next).

5. Theory versus model in cognitive science

With the afore-discussed background in mind, let us
now consider the issue of the theoretical (and methodolog-
ical) status of computational modeling and simulation:
whether computational cognitive modeling constitutes the-
ories of cognition, and whether something else is more
essential for a theoretical understanding of cognition.
Below I will identify and analyze a few common (or highly
plausible) positions.

In relation to computational cognitive modeling, one
possible (and starkly negative) viewpoint is that computa-
tional modeling and simulation, including those based on
cognitive architectures, should not be taken as theory. A
computational cognitive modeling, Cognitive Systems Research
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simulation is a generator of phenomena (i.e., generating
various possibilities). Although it may be important for
developing cognitive theories, it does not constitute cogni-
tive theories, as some would claim. To produce a scientific
theory of a given cognitive phenomenon, it is not enough
to generate it. (Otherwise, as some would claim, any
human would have a scientific understanding of the mind
just because they produce cognitive phenomena.) To pro-
duce a scientific theory of cognition, it would be necessary
to articulate it in a different (e.g., more ‘‘succinct”) way.

Furthermore, as some would claim, a theory-building
tool such as computational cognitive modeling would serve
to build a theory, but it is not a theory. When looking for
knowledge about a given phenomenon, one would prefer to
study a theory than the tools used to build the theory. For
one thing, if simulations and models are theories, they ulti-
mately must conform to data; if they are only tools, then
they need not (cf. Roberts & Pashler, 2000). If a model con-
firms the hypotheses obtained from interpreting a verbal–
conceptual theory, then the model corroborates the theory;
if it does not, it may lead to the formulation of new theo-
ries. In either case, the model may be a tool contributing to
building a theory. Tools and theories should not be con-
fused, as has been argued, because they serve different pur-
poses. In this regard, it was claimed that computational
cognitive models, cognitive architectures, modeling lan-
guages, and associated utilities were all tools.

A related claim is that computational modeling/simula-
tion facilitates the precise instantiation of a (pre-existing)
verbal–conceptual theory and consequently the careful
evaluation of the theory against data. The scientific
approach in the physical sciences is to demonstrate that a
theory is empirically accurate or, wherever that demonstra-
tion cannot be made, that the theory is empirically ade-
quate and those aspects that cannot be validated are
useful (Bechtel, 1988; van Fraassen, 1980). As some would
claim, computational modeling and simulation are useful
in this sense (e.g., Axtell, Axelrod, & Cohen, 1996), but
they are not theory per se because they are there for the
sake of validating theories.

Along this line of models as tools, some would claim
that they are tools for developing new theories: what is
important is not models being derived from prior theories,
but models leading up to new theories. The virtue of com-
putational modeling and simulation (including cognitive
architecture based modeling and simulation) is that the
models can be rigorous, specific descriptors of observed
behaviors, and when different observers of a behavior have
different descriptions of that behavior, those different
descriptions can all be modeled (cf. Sloman, 2000). This
characteristic makes computational cognitive modeling
and simulation different from traditional approaches. As
some would claim, it enables us to engage and experiment
with observations and data in a precise way, and possibly
without the constraints of prior verbal–conceptual theories
(which are often vague and not adequately validated). If
good theories are to be produced, then the lesson from
Please cite this article in press as: Sun, R., Theoretical status of
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the physical sciences is that they need to be produced on
the basis of good observations and data. As has been
claimed, modeling enables us to formalize observations
without spurious a priori generalizations. As such, it might
be an important means of developing good cognitive theo-
ries. But still, it is not a theory itself because its form is not
consistent with traditional forms of scientific theories and
so on.

Yet another position is that different theories may be
integrated into a simulation model. In constructing a com-
putational simulation model, one often abstracts from the
descriptive contents of verbal–conceptual theories and tries
to formalize them into sets of equations or algorithms. In
doing so, a computational simulation model may combine
various theories (or various aspects of a theory). It there-
fore may lead to integrating different perspectives. That
is, a computational model may specify when a subroutine
with a particular set of equations or a particular algorithm
is used (Sun, 2002, 2003; Sun et al., 2001). In this sense, the
model ‘‘weighs” the perspective of each theory (or each
aspect of a theory) in terms of its applicability and its rel-
ative impact. Thus, fragmentary theories compete and
cooperate in the simulation model, and they also compete
and cooperate in explaining simulation results. For exam-
ple, ACT-R combines a theory of sensory-motor control
with a theory of memory activation, among other things
(Anderson & Lebiere, 1998). CLARION combines a the-
ory of implicit and explicit learning with a theory of moti-
vation, among other things (Sun, 2003). Further
formulation of theories, in relation to simulation may lead
to changing the theories, that is, improving the theories.

On the opposite end of the spectrum, there has been a
radically different position, as advocated by, for example,
Newell (1990) and Simon (1992), for which I shall argue.
According to this position, a computational cognitive
model can be a cognitive theory. A model can be a theory
in and by itself. It is not the case that a model is limited to
being built on top of an existing (verbal–conceptual or
mathematical) theory, applied for the sake of generating
data only, applied for the sake of validating an existing the-
ory only, or applied for the sake of building a future theory
only.

Let us see how we might arrive at such a position. Sup-
pose one starts with a general verbal–conceptual theory (of,
say, human motivation, or human decision making), and
wants to construct a computational model and a simula-
tion that are, in some sense, designed to reflect the essential
explanatory structure of that theory. Invariably, one has to
make numerous choices along the way, some of which are
purely computationally motivated, in order to make the
simulation run (especially with regard to which parameters
are needed and which are not, and the functions that relate
those parameters to one another in the computational
model). Moreover, constructing a model often reveals log-
ical gaps in the original theory that must be filled in order
to make the simulation work. In the end, the model often
introduces functional relationships that the original theory
computational cognitive modeling, Cognitive Systems Research
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did not specify, and often specifies gap-filling assumptions
that the original theory never made. These additions make
the logical connection between the theory and the model
tenuous at best. Computational models thus become dis-
tinct theoretical constructs. The fact that there may be
some shared terms and some correspondences of functional
relationships is not sufficient to establish a clear mapping
between a theory and a computational model. Further-
more, there may not even be a consistent mapping. But,
unless there is a clear and consistent mapping between a
computational model and a theory, any ‘‘enhancement”
that one adds to the verbal–conceptual theory is somewhat
arbitrary. If there is no clear and consistent mapping
between a computational model and a theory, then the out-
put from the simulation has very little bearing on the origi-
nal theory and cannot, in any rigorous sense, be a test of
the original theory.7

More importantly, when constructing detailed simula-
tion models inspired by ‘‘loose” conceptual–verbal theo-
ries, there are inevitably many ‘‘degrees of freedom” in
specifying assumptions of the simulation models (usually
much beyond minor indeterminacies such as yet-to-be-
determined parameter values). If different people created
different simulations based on the same theory, they would
obtain rather different output patterns because of the ambi-
guity (major ambiguity beyond minor indeterminacies such
as parameter values). The looser the original theory, the
greater the chance that some of the simulations will contra-
dict each other. We may be in a paradoxical situation that
two modelers could apply the same theory differently,
believing that their different simulation models (with differ-
ent outcomes) were both valid representations of the
theory.

If it is possible to have multiple, mutually contradictory
simulation models derived from the same theory, then such
a theory is underspecified, or even logically vacuous some-
how, especially when it is underspecified to the extent that a
significant portion of the output space is covered by differ-
ent simulations derived from the same theory. The simula-
tions in this case represent substantial enhancements over
the original theory. If there are multiple simulation models
with mutually contradictory results, then they are differ-
ently enhanced versions of the original theory, or different
theories (at least from a logical standpoint). Thus, they
may need to be adjudicated by empirical work. However,
the falsification of any of these models may not truly falsify
the original theory, because of the strenuous connections
between them. (And in case a generic cognitive architecture
is involved, falsification is even more difficult, because of
the very generality of a cognitive architecture.)

This scenario leads directly to the belief that a computa-
tional simulation model may be, in fact, a separate theory.
A computational cognitive model is a formal description of
7 The problem with the view that simulations are tests of verbal–
conceptual theories is that, often, there is no way other than argument to
show that a simulation represents a theory.
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relevant cognitive phenomena. The language of a model is,
by itself, a distinct symbol system for formulating the the-
ory (Newell, 1990).8 In particular, in substantiating a ver-
bal–conceptual theory for the sake of simulation, any
enhancement (of any of the two kinds discussed above)
that one does to the verbal–conceptual theory is rather
arbitrary. Instead, assuming that one has good definitions
for the terms and the relationships involved in the simula-
tion, it often makes more sense to think of the simulation
model as a more rigorous theory, perhaps inspired by the
original verbal–conceptual theory, but nonetheless a theory
in its own right. No verbal–conceptual theory completely
specifies the computational mechanisms involved,
let alone the dynamic processes that may emerge. Thus,
computational cognitive modeling is needed to specify
these complex aspects, in order to produce a runnable com-
putational simulation. The computational framework is, in
essence, just another language for presenting a more rigor-
ous and/or more detailed theory. Like verbal–conceptual
theories or equation-based mathematical theories, compu-
tational models can, for example, be used to generate pre-
dictions. In fact, they can generate more precise predictions
that can be more precisely (but not necessarily more easily)
tested.

A logical conclusion from the above discussion is that a
computational cognitive model can provide a cognitive the-
ory and a scientific explanation of the corresponding cogni-
tive phenomena. Their constructs and functional
relationships can constitute the theory of, and the explana-
tions for, the patterns of output they generate. This posi-
tion has been advocated by many in the cognitive
modeling community in the past (e.g., Anderson & Lebiere,
1998; Newell, 1990; Simon, 1992; Sun, 2006, 2008).

In addition to arguing against the ‘‘models as instantia-
tions/derivations of verbal–conceptual theories” view, as
has been done above, it is also necessary to argue against
the other views mentioned above. For instance, in relation
to the ‘‘models as data generators only” view, I want to
emphasize that simulation models are often not just data
generators, because there is rarely such a thing as a the-
ory-free simulation (if ever). A computational simulation
model often embodies theories, explicitly or implicitly
(Kuhn, 1970), or it may constitute a theory by itself
whether it is claimed to be so or not (Newell, 1990; Sun,
2008). Therefore, computational cognitive models and sim-
ulations need not be only a ‘‘data generator” (although
they sometimes are) or a ‘‘theory-building tool” (although
they can be). On the contrary, computational cognitive
models and simulations often embody cognitive theories
theory is useful insofar as the meanings of its terms are (more or less)
shared by its users, so should the meanings of the terms of a computa-
tional model be shared by its users. To enable this sharing, definitions for
any terms that might be understood in different ways by different
researchers may be needed, the same with all types of theories.

computational cognitive modeling, Cognitive Systems Research
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or are cognitive theories themselves, although, as theories,
they may not be as ‘‘succinct” as other types of theories
(more discussions of this point later in Section 6). Note that
this is not to say that a computational model cannot be a
data generator, but that it is often more than that.

In relation to the ‘‘models directly engaging data and
leading up to new theories” view as mentioned earlier, I
should emphasize that, as argued before, there is rarely
such a thing as a theory-free observation (due to the the-
ory-ladenness of observations; Kuhn, 1970), and further-
more, there is rarely such a thing as a theory-free model
(Kuhn, 1970). Thus, there is rarely such a thing as directly
describing data. Consequently, computational cognitive
models often constitute new theories themselves, rather
than leading up to new theories (although they may do
so sometimes).

In reality, computational cognitive models are rarely
entirely inspired by one generic verbal–conceptual theory.
They are often constructed from integrating multiple
sources: possibly including (often narrowly-scoped) equa-
tion-based mathematical theories from psychology, compu-
tational models from AI, philosophical ideas, and so on. It
is especially likely that they integrate fragmentary (nar-
rowly-scoped) theories and show how they may fit together
into a computational model, which specifically addresses
how components may interact with each other (see, e.g.,
Anderson & Lebiere, 1998; Sun, 2002). So, in relation to
the ‘‘cooperation/competition of multiple theories” view
mentioned earlier, one may argue that the resulting model
is a theory that has likely lost its direct connections to the
original theories that were combined into the model. The
formulation of a computational cognitive model for the
sake of simulation may lead to modifying the details of
the constituting original theories and/or the details of their
inter-relations and their interactions – that is, the computa-
tional model may constitute a brand new integrated theory
(see, e.g., Sun, Slusarz, & Terry, 2005a).

Relatedly, in the field of Artificial Life, there have been
similar debates about the status of simulations. The ‘‘phys-
ics model” view in artificial life is based on the idea that
results from simulations can be used to generate new
hypotheses. The ‘‘emergent thought experiment” view is
based on the notion that simulation may be used as a com-
plex thought experiment (i.e. one where the outcome of a
condition can only be ascertained by a computer simula-
tion), analysis of which helps to explore and inform modi-
fications of a theory and then the thought experiment is
conducted again, ad infinitum (Bedau, 1999; Di Paolo,
Noble, & Bullock, 2000).

Likewise, in the field of Social Simulation, there have also
been some similar debates about these points. One can easily
find counterparts of the various positions enumerated above
among social simulation researchers. For example, the posi-
tion that a simulation is a theory per se, or the position that a
simulation is only a test of a theory, and so on, can all be
found in that field (see, e.g., Axelrod, 1984; Axtell et al.,
1996; Castelfranchi, 2001; Johnson, 1989).
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6. Unifying perspectives on scientific theories

Over the past several hundred years of modern science,
the conception of scientific theory has been changing, as
physics in particular has become more and more abstract
(Salmon 1984, 1998). For example, a scientific theory (or
an ‘‘explanation” based on a scientific theory) was com-
monly understood as identifying causes. However, the
interest in a more sophisticated definition of scientific the-
ory grew as many of the scientific theories of the twentieth
century came to construe, construct, and depend upon the-
oretical constructs that are not directly observed by human
senses (including, e.g., certain notions of mechanisms;
Bechtel & Abrahamsen, 2005; Machamer et al., 2000).9

One cannot legislate, based purely on past experience, what
counts and does not count as a scientific theory (as long as
it is within a reasonable range). When we speak of a scien-
tific theory, we should only insist that what is invoked as a
theory really be an account of whatever it is supposed to
account for (Ross & Spurrett, 2004).

A unifying perspective on various forms of scientific the-
ories (such as verbal–conceptual theories, mathematical
theories, or computational models) can be centered on
the notion of the descriptive complexity of a theory. A the-
ory should represent our best knowledge regarding the nat-
ure of a class of phenomena. However, depending on
domains, our best knowledge varies in terms of explana-
tory succinctness.

In some cases, a small and rigorous set of mathematical
equations are able to express the structures and the regular-
ities of a domain to a sufficient extent, approximating with
an acceptable level of accuracy. For example, in physics,
Newtonian classical mechanics is such a case. However,
in some other cases, a succinct set of equations cannot be
found that can express domain regularities and structures
to a satisfactory extent. In that case, a more complex form
of theory may be required. Computational models, in my
view, are but a possible class of complex theories for such
domains. Understanding the human mind is one domain in
which, notably, no simpler form of theory is available or
sufficient.

The question is: Are these two different classes of theo-
ries, mathematical equations and computational models,
fundamentally different? After all, mathematical equations
and computational models are both instances of the class
of formal models. In that sense, they are not fundamentally
different. But they are certainly different in some less funda-
mental ways. One difference is that mathematical models
computational cognitive modeling, Cognitive Systems Research
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are easier to specify (in terms of length of description) while
computational models often take longer descriptions to
express. Another difference is that mathematical models
are often in the closed-form (i.e., with the relationship
between input and output variables apparent) while com-
putational models in the open form. However, issues of
matching, validation, and prediction are common to all
formal models, whether mathematical or computational.10

Let us examine the issue of descriptive complexity, that
is, the issue of description length, in some more detail.
Kolmogorov complexity (Li & Vitanyi, 1997) is a mathe-
matical measure of complexity, based on how many binary
bits are needed on a theoretical model of computation (i.e.,
the Turing machine) to capture (i.e., to encode) a computa-
tional process (that is, to express an algorithm). More
loosely, Kolmogorov complexity measures the minimum
length of the description of an algorithm (or a program).
See Li and Vitanyi (1997) for technical details. It is a solid,
though often neglected, foundation upon which we may
theorize about forms and types of scientific theories as well.
For instance, in a way, much of the scientific enterprise
may be viewed as aimed at creating descriptions (i.e., theo-
ries) of the phenomenological world at a lower and lower
Kolmogorov complexity – leading to simpler and simpler
theories (Bechtel, 1988). This is a major, if not ultimate,
goal of science.

We need to answer the question of why we need to con-
dense information to obtain shorter theories. This is a
question that can be answered based on existing, well-
known principles. We may draw upon the minimum
description length principle – the principle that says that
the simplest theory is the best theory, based on the conjec-
ture that the simplest theory can maximally enhance gener-
ality or universality of descriptions (Li & Vitanyi, 1997). A
succinct theory may reduce the number of functional rela-
tionships needed to explain the world: Some relationships
may be merged and accounted for at a deeper level. The
same can be said of the number of essential entities
involved.

A key difference between different types of scientific the-
ories, I believe, lies in the description length of a theory
(and possibly, by extension, the numbers of individual enti-
ties and relationships required by the theory). In this con-
text, often, the deeper the level of description, the shorter
the description length of the theory. However, often, the
deeper the level of description, the longer the description
length of the explanation for a phenomenon (constructed
out of the theory). That is, shorter description lengths of
deeper theories lead to ‘‘denser” (longer, more complex)
descriptions of the explanations of phenomena.

For example, as argued in Coward and Sun (2004), a
description of the scientific explanation of cooking a meal
10 Taber and Timpone (1996) and Sun (2008) expressed this view in their
books, respectively. Both mathematical and computational models are
included in Johnson (1989)’s book as well, although it is in a different (but
related) field. See also Lave and March (1975).
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at the chemical level would require the inclusion of hun-
dreds or thousands of different chemicals interacting in dif-
ferent ways. At the atomic level, the description of the
explanation of the same phenomenon would require the
inclusion of many more atoms. The quantum mechanical
level would require the inclusion of each of the individual
electrons and nuclei, with each of these particles being
described by a probability distribution. A description of
the explanation of even the simplest macro-level phenome-
non would be painstakingly long if fully constructed using
deeper theories at a micro level. A description of the expla-
nation of the same phenomenon at a deeper level should in
general be expected to have a higher description length, or
a higher Kolmogorov complexity.

In practice, however, full descriptions of explanations of
high-level phenomena are almost never created at the more
detailed (deeper) levels. For example, there has never been
a description of the scientific explanation of cooking a meal
constructed at the quantum mechanical level. Detailed
descriptions of explanations are created for a number of
limited but precisely defined phenomena (Coward & Sun,
2004). Humans can only handle a limited amount of (expli-
cit) information at one time (Sun, 2002). They must use a
higher-level theory for thinking about (explaining) broader
phenomena, and then zero in on smaller areas in order to
apply a deeper theory.

In contrast to this higher descriptive (Kolmogorov)
complexity of phenomena, the description of a theory per
se at a deeper level often has a lower Kolmogorov complex-
ity (although not always). This often means that the num-
ber of different types of entities that are needed at a deeper
level is often smaller than that at a higher level, and the
number of different types of relationships at a deeper level
is often smaller as well (Coward & Sun, 2004). Thus, theo-
ries at a deeper level may often be more ‘‘succinct”. In
other words, a theory per se at a deeper level may often
have a shorter description length, or lower Kolmogorov
complexity (although, in contrast, descriptions of explana-
tions of phenomena constructed out of the theory may
have higher Kolmogorov complexity).

The paradoxical effect of deeper levels, in part due to the
contrast between the descriptive (Kolmogorov) complexity
of theories and that of explanations constructed out of the
theories, leads to compromises – Multiple levels of descrip-
tions may be used and relationships among them are
explored (Sun, Coward, & Zenzen, 2005b). For example,
from social simulation models to models of individual cog-
nition, and further to detailed physiological models of the
brain, multiple levels co-exist and are explored simulta-
neously, for the sake of coping with complexity in the
above two senses (see Sun et al., 2005b).

Viewed in this light, equation-based mathematical theo-
ries and computational theories are often (though not
always) at the opposite ends of the spectrum. Equation-
based theories per se often have shorter description lengths,
but often generate longer explanations of actually observed
cognitive phenomena (if such explanations are generated at
computational cognitive modeling, Cognitive Systems Research
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all). Computational models often have longer description
lengths, but may often in the end generate shorter explana-
tions of actual cognitive phenomena (and often at a deeper
level as well). Imagine the scenario of generating explana-
tions for a complex skill learning task. A more succinct
equation-based theory may have trouble dealing with the
cognitive mechanisms and processes underlying it, while a
more complex computational model may produce a rela-
tively succinct description (simulation) of such processes.
See, for example, Sun et al. (2001) for such a case. How-
ever, both types are legitimate scientific theories by virtue
of the fact that they both provide explanations of phenom-
ena at a certain level of abstraction (or, at multiple levels of
abstraction in some cases; Sun et al., 2005b). See, for exam-
ple, Sawyer (2003) and Parunak, Savit, and Riolo (1998)
for similar discussions regarding computational models
versus mathematical equations (though with regard to
agent-based versus mathematical modeling in social simu-
lation). On the other hand, verbal–conceptual theories
may be useful at an initial stage of investigation, by ways
of providing initial hypotheses. But they usually do not
provide precise and detailed theories comparable to either
computational models or equation-based mathematical
theories. Therefore, verbal–conceptual theories cannot be
compared to the other two types through the measure of
descriptive (Kolmogorov) complexity.

In cognitive science, instead of purely mathematical equa-
tions trying to capture details of cognitive mechanisms and
processes, more complex and more detailed computational
models are often used, in order to provide more precise
and more detailed descriptions. Current mathematics, devel-
oped to describe the physical universe, may not be sufficient
for describing the complex human mind. Compared with sci-
entific theories in other disciplines (for example, in physics),
computational cognitive modeling may be mathematically
less elegant (Greene, 1999). But the reality is that the human
mind itself is likely to be less mathematically elegant com-
pared with the physical universe, because the human mind
is made up of complex artifacts that are created through a
long and incremental evolutionary process (see Minsky,
1985 for a similar view). Therefore, an alternative form of
theorizing is called for, a form that is more complex, more
diverse, and more algorithmic (as opposed to mathematical)
in nature. However, these two forms, mathematical and
computational, can be complementary to each other. So they
can co-exist in cognitive science, for example, for the sake of
generating descriptions at different levels and of different
scales. In fact, often, in cognitive science, a combination of
mathematical equations and computational procedures
(i.e., algorithms) is used, as currently commonly practiced
in computational cognitive modeling. The advantages of
using such hybrid forms are the added flexibility and the
added expressive power such forms afford, which many
researchers in the cognitive science community argue are
necessary for understanding a system as complex as the
human mind (Minsky, 1985; Newell, 1980, 1990; but see
Massaro, 1988; Regier, 2003). Computational cognitive
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models provide a viable way (the only viable way, as some
may argue) of specifying detailed, precise, and complex the-
ories of cognition. Consequently, they may provide detailed
interpretations and insights that no other experimental or
theoretical approach can provide.

According to Kitcher (1981), establishment of common
patterns in theoretical descriptions and explanations
(‘‘argument patterns”) that hold within (or across) sciences
is necessary. For instance, evolutionary biology is charac-
terized by its frequent use of explanations that cite measur-
able effects of environmental or other selection on the
distribution of inheritable properties within populations.
A biologist does not question the validity of this kind of the-
ory in general, because accepting the soundness of its logic
is part of what makes one a biologist. For computational
cognitive modeling, what is currently lacking is the willing
acceptance, within larger communities, of the approach as
a completely valid form of theoretical description. (To some
extent, there is also some lack of internal agreement on
some details of acceptable theoretical-explanatory patterns
within computational cognitive modeling.) But computa-
tional cognitive modeling can, and should, become accepted
theoretical-explanatory patterns in cognitive science.

Algorithms, as well as symbols and data structures used
therein, constitute a unique language of scientific theoriz-
ing, somewhat different from either verbal–conceptual the-
ories or mathematical theories. The technology of
computing apparently brought something new to scientific
theorizing (Turing, 1950), in cognitive science, as well as in
some other fields (such as social sciences). It appears that
we may be currently in a period of ‘‘revolutionary” (i.e.,
transitional) science (as indicated by many before; Kuhn,
1970), in the sense of intensely building and heavily relying
on new kinds of theorizing that traditional cognitive sci-
ences (traditional experimental psychology, mathematical
psychology, and so on) were not able to utilize (as a result
of the lack of tools for algorithmic descriptions). Although
other fields may be utilizing computational methods too,
the significance of such methods in many of these fields
(such as physics, chemistry, and so on) may not be as great
as that of computational methods in cognitive science. In
fact, computational modeling has been the very foundation
of cognitive science, ever since its inception (Newell, 1980).
Because of the adoption of this new kind of theorizing, it
may in turn be possible to provide precise and detailed the-
ories that traditional methods cannot.11

If we are in a transitional period dealing with new ana-
lytical tools (‘‘algorithms”) and new intellectual
approaches to theory building, it is necessary that we fully
understand the power as well as the limitations of the new
tools and approaches. It may be appropriate to delimit
what we can do as well as how we can report results by a
set of new criteria (see, e.g., Schunn & Wallach, 2001).
computational cognitive modeling, Cognitive Systems Research
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These criteria may emerge from the cumulative experience
of the whole of the research community. New kinds of the-
orizing may not be bound by old (‘‘traditional”) criteria
regarding scientific theories and, in particular, regarding
forms of such theories.

A second (auxiliary) possibility for a unifying perspec-
tive on various forms of scientific theories is to keep in
mind the trade-off between the descriptive (Kolmogorov)
complexity of a theory and the scope of its empirical con-
tent (Lakatos, 1970). Given that at any particular level of
abstraction, with increasing descriptive complexity of theo-
ries, more and more empirical data (observations) may
often be accounted for, there is the question of when a the-
ory (for example, a cognitive architecture) is too complex.
This issue may be considered from the viewpoint of the
‘‘ratio” of complexity over empirical content (which is a
sort of cost–benefit ratio). Obviously, we want to account
for as much empirical content as possible. We also want
to limit the growth of complexity of a theory as much as
possible (or even try to reduce its complexity). Then, we
need to trade-off the coverage of empirical content with
the level of complexity. The difference between equation-
based mathematical theory and computational modeling
may be viewed, to some extent, in this light. Equation-
based theories are generally more concerned with simplicity
(i.e., reduction of complexity), while computational models
(especially cognitive architectures) are more aimed for the
breadth and scope of data/observations accounted for.

Yet another (auxiliary) possibility for a unifying perspec-
tive on various forms of scientific theories is also based on
the complementarity of different methods. A complete scien-
tific theory would address the what, when, how, and why of a
phenomenon. When we have a phenomenon to explain, we
would like to discover the necessary and sufficient conditions
of that phenomenon. In the process, we may need to consider
different degrees of category membership of empirical cases.
We also need to investigate empirically the major entities
and the major functional relationships involved. We may
want to show how the mechanisms and processes involved
work. In other words, we may come up with a detailed mech-
anistic and process-based explanation. Optionally, we may
also need a deeper theory of why the phenomenon is present,
and so on. So, a scientific theory requires at least: (1) a spec-
ification of the essential condition of a given phenomenon
and (2) a specification of the mechanisms and processes by
which the condition brings about the phenomenon. Compu-
tational cognitive modeling helps to delineate both of the
above two aspects, but often more of the second aspect
(see, e.g., Sun et al., 2001). On the other hand, equation-
based cognitive theories and verbal–conceptual cognitive
theories excel more at addressing the first aspect. Thus, dif-
ferent types of theories may be complementary to each other
in this sense as well.

The discussions above present several unifying perspec-
tives on different types of theories, and unequivocally sup-
port the view that computational cognitive models can be
theories of cognition in and by themselves. Hopefully, these
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perspectives above will be a step towards resolving the dis-
pute among the different positions (as enumerated earlier)
on this issue.12

7. Relationship between Theories and Data

Let us turn to methodological issues. In connection with
the afore-discussed unifying perspectives, we may examine
claims about the significance of data and observations in
theory formation. Some insist that one should produce,
accept, or reject theories, strictly based on data and obser-
vations, and use this point in their arguments against com-
putational cognitive modeling. However, there are plenty
of reasons to believe that, without theories, observations
and data are often impossible. There is rarely such a thing
as a theory-free observation (Kuhn, 1970; van Fraassen,
1980). Without an explicitly stated theory, observations
and data are laden with hidden, often inaccurate, vague,
but intuitive theories (as often seen in experimental psy-
chology). One does not start with a conceptually blank
slate. Existing conceptual structures constrain how one
perceives the world and formulates observations (Kuhn,
1970; van Fraassen, 1980).13

The over-emphasis of the significance of data and obser-
vations is not based on any well accepted account of the his-
tory of science or philosophy of science. As Jules Henri
Poincare pointed out, science is built with data just as a
house is built with bricks, but a collection of data cannot
be called science any more than a pile of bricks can be called
a house. Theories do not simply accumulate from data and
observations; instead, theories help us to select, organize,
and integrate data and observations (Poincare, 1982).

For example, Einstein was, for the most part, not moti-
vated by experimental data. Bodanis (2000) stressed the
idea that the mathematical theory that Einstein proposed
was not driven by data in any real sense. ‘‘What they [other
physicists] could not grasp was that he [Einstein] didn’t
have any labs. The ‘latest findings’ he worked with came
from scientists who’d died decades or even centuries before.
But that did not matter. Einstein hadn’t come up with his
ideas by patiently putting together a range of new results.
Instead, as he saw, he just spent a long time dreamily think-
ing about light and speed and what was logically possible
in our universe and what wasn’t” (p. 80).

Likewise, Kepler mostly did not build up the theory of
the elliptical orbit from data. The people working from
experimental data were not making progress on theories.
computational cognitive modeling, Cognitive Systems Research
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Only by thinking in a different way, theoretically, was pro-
gress made. Before Kepler, circular motion was essential to
the concept of planet, and non-circular planetary orbits
were simply inconceivable.

Copernicus’s model of the solar system was also mostly
theory-driven, not data-driven. At the beginning, the pre-
dictions of his model were not even as accurate as the
earth-centered view. Newton also did not deduce theories
from data, but proposed theories aimed to be compatible
with empirical observations (van Fraassen, 1980). Kuhn
(1970) contained ample evidence of such cases.

Most leading scholars in philosophy of science rejected
the idea that new theories come about by building observa-
tions and data into patterns (Bechtel, 1988; Thagard, 1986;
Toulmin, 1960; van Fraassen, 1980). Rather, the opposite
is true: Theory is necessary in order to understand and
organize data and observations. In physics, it is of no use
even beginning to look at things until one knows exactly
what one is looking for: Observation has to be strictly con-
trolled by reference to some particular theoretical problem
(Toulmin, 1960). The emphasis on using observations and
data alone (or for the most part) to build new theories is
misplaced.

The methodological implication of the above for compu-
tational cognitive modeling is that, in the course of compu-
tational cognitive modeling, proposing mechanisms and
processes not strictly derived from data and observations
(such as certain structural, mechanistic, or process-based
assumptions in cognitive architectures as discussed earlier
in Section 3) is justifiable methodologically. Remember that
theories are needed in gathering data/observations and in
interpreting them, so theories not strictly derived from
data/observations are there to begin with. Detailed pro-
cess/mechanism specifications in computational cognitive
modeling can be viewed as theoretico-computational postu-
lates, in a way equivalent to Kepler’s or Copernicus’ initial
theories, which may then be evaluated in terms of empirical
adequacy (van Fraassen, 1980) on the basis of data/obser-
vations that they are aimed to account for. These data/
observations may be collected under the guidance of, in cor-
respondence to, and sometimes for the sake of empirical
validation of the postulates embodied in the process/mech-
anism specifications of computational cognitive modeling.
As pointed out by van Fraassen (1980), ‘‘empirical minimal-
ity is emphatically not to be advocated as a virtue, it seems
to me. The reasons for this point are pragmatic. Theories
with some degree of sophistication always carry some
‘metaphysical baggage’. Sophistication lies in the introduc-
tion of detours via theoretical variables to arrive at useful,
adequate, manageable descriptions of the phenomena” (p.
68). Judging from the physical sciences, such sophistication
is necessary to arrive at deep and broad scientific theories.
The fact that some details of such theories were motivated
from a computational standpoint need not be a problem,
considering all the discussions above, because computa-
tional considerations are but one class of theoretical consid-
erations (see also Thagard, 1986).
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This implies that there are good reasons for using com-
putational cognitive modeling, as well as that there are
severe constraints on how computational cognitive model-
ing may proceed (just like other types of scientific theoriz-
ing). That is,

� Building computational cognitive models that contain
speculative computational elements is not just inevita-
ble, but in fact methodologically justified.
� Computational cognitive models and simulations of

cognitive data are always theory-laden. When we make
a claim based on a computational model or a simula-
tion, we are taking a theoretical position, not simply
observing the world.
� Assessing the validity of a computational cognitive

model, in the scientific realist sense, is impossible.
Instead, we can only aim for practical (i.e., empirical)
adequacy (in the constructive empiricist sense); that is,
a computational cognitive model is assumed to be valid
until it is discovered to be no longer useful (e.g., replaced
by a more accurate model).

Accordingly, building theories and models – computa-
tional cognitive models in particular – strictly from data
and observations runs into the twin problems of the
implausibility that one can have theory-free data and
observations and, on top of that, the difficulty of establish-
ing that the theories and models are valid representations
of such data and observations.

It should be emphasized that constructive empiricism,
the philosophical view that scientists customarily build the-
ories that are compatible with empirical data and observa-
tions rather than strictly engage in deducing underlying
‘‘reality” from data and observations, may make a more
sensible philosophical foundation for computational cogni-
tive modeling, especially when it is compared with scientific
realist accounts (believing that scientific theories necessar-
ily reflect the ‘‘true reality”) or naive empiricist accounts
(limiting theories to be strictly based on empirical data
and observations) that some scientists seem to subscribe
to. Like other scientific theories, computational cognitive
models can be viewed, in some sense, as plausible and use-
ful fictions (with regard to the unobservables; van Fraas-
sen, 1980). See van Fraassen (1980) for a detailed
account of this position (see also the discussion in Section
4 earlier).

This issue of theory versus data/observation may be
related to the Kuhnian notion of ‘‘paradigm”, within the
unifying perspectives outlined earlier. According to Kuhn
(1970), on the assumption that a current theory is consis-
tent and correct, observations and data are collected and
fitted within this current theory (or scientific ‘‘paradigm”).
New and unexpected phenomena may be uncovered in the
process, and they may lead to revision and refinement of
the existing theory. In cognitive modeling, especially with
cognitive architectures, bold initial hypotheses (e.g.,
regarding a cognitive architecture) are made, and gradual
computational cognitive modeling, Cognitive Systems Research
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refinement and re-organization of details follow. That is,
structural and other commitments (such as mechanistic
and process-based assumptions in a cognitive architecture)
constitute an initial theory, which undergoes testing and
validation through matching with data. Revision and
refinement are undertaken when inconsistencies with, or
incorrect predictions by, a model are discovered, or when
the model is incapable of predicting something important
(Lakatos, 1970). However, when given a sufficiently high
degree of mismatch between data and the current cognitive
model, that is, when revision and refinement appear no
longer able to accommodate problems that arise, a crisis
may develop, which leads to a new ‘‘paradigm”, for exam-
ple, a new cognitive architecture or even a new approach
towards building cognitive architectures. This process does
not rely on the questionable existence of pure, theory-free
data and observations, but views computational cognitive
models as ‘‘paradigms”, or provisional guiding principles,
for experimental design, data gathering, and data interpre-
tation, which themselves are subject to revisions in the pro-
cess of directing experimental design, helping data
gathering, and interpreting experimental results.

This discussion immediately brings up the practical issue
of actual empirical validation of models (that is, in a con-
structive empiricist sense). Despite the argument made ear-
lier regarding the inevitability of proposing mechanisms/
processes that are not strictly empirically derived, some
kind of empirical validation, in the sense of testing empir-
ical adequacy (van Fraassen, 1980), after mechanisms and
processes (such as structural, mechanistic, or process-based
assumptions in cognitive architectures) have been pro-
posed, is indeed needed in order to make computational
cognitive modeling a science. In addition, in practical
terms, in order for it to be convincing to the larger commu-
nities of scientists, it needs validation.14

A variety of practical methodologies for validating com-
putational cognitive models have been developed, includ-
ing using direct behavioral measures (such as accuracy,
response time, and so on, mostly for validating input–out-
put behaviors) and using indirect measures (such as eye
tracking, brain imaging, and so on, mostly for validating
internal details). However, computational cognitive models
are notoriously hard to validate, even more so than other
types of theories of cognition, because computational cog-
nitive models specify much more details, especially compu-
tational details, of cognitive processes and mechanisms.
The level of details involved makes them very hard to be
validated in a systematic and methodical way (let alone
completely). It appears that, for the sake of validation
(and for other purposes), complexity reduction is an impor-
tant issue (Bechtel & Richardson, 1993). As this is an
important and broad topic, it deserves a separate treatment
by itself; see Sun (2006a) for some details.
14 However, note that I said ‘‘some kind of empirical validation”, not
‘‘complete” validation, which is, as argued before, theoretically naive and
practically infeasible (van Fraassen 1980).
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Furthermore, in relation to validation, we might, at a
theoretical level, draw upon ideas from Kuhn (1970),
Lakatos (1970), and Laudan (1979), as mentioned before,
in countering some criticisms that I would consider unjus-
tified. A very general idea from these authors is that not
every aspect of a scientific theory is, or can be, validated.
A theory, as a whole, may be taken as a ‘‘paradigm”, until
it has been shown to be grossly inadequate (Kuhn, 1970),
notably not just for lacking ‘‘complete” validation.
Lakatos (1970) delineated the condition under which a the-
ory (or a research program) may be considered inadequate,
again not requiring complete validation of the theory (or
the research program). The upshot is that the criticisms
of computational cognitive modeling (including cognitive
architectures) on the basis of involving a great deal of
computationally motivated details and the difficulty with
‘‘complete” validations of these details are rather mis-
placed, and unjustified from a broad perspective derived
from the history of science.

8. Practical benefits of computational cognitive modeling

Given the (mostly theoretical) discussions above, let us
now turn to the practical importance of computational
cognitive modeling in understanding cognition. I would
like to enumerate a few important practical benefits of
computational cognitive modeling. Admittedly, the exis-
tence of practical benefits does not directly justify treating
computational cognitive models as theories, but it may
make the view more palatable in a practical sense.

There are practical reasons to believe that the goal of
understanding the human mind strictly from observations
of human behavior is ultimately untenable (except perhaps
for understanding human performance in small and limited
task domains). The rise and fall of behaviorism is a case in
point. The key point is that the mechanisms and processes
of the mind cannot be understood purely on the basis of
behavioral experiments, with tests that inevitably amount
to probing only relatively superficial features of human
behavior, which are further obscured by individual/group
differences and contextual factors (Newell, 1973). It would
be extremely hard to understand the human mind in this
way, just like it would be extremely hard to understand a
complex computer system purely on the basis of testing its
behavior, when we do not have any a priori ideas about
the nature, the inner working, and the theoretical underpin-
nings of that system. Therefore, theoretical developments
(of various sorts) need to go hand-in-hand with experimen-
tation on human behavior, as argued (in a more theoretical
manner) in the previous section. This case may also be
argued on the basis of analogy with the physical sciences;
see Sun et al. (2005b) for details of such an argument.

Given the complexity of the human mind, and its man-
ifestation in behavioral flexibility, complex mechanistic,
process-based theories, that is, computational models, are
necessary to explicate the intricate details of the mind.
Without such complex theories, experimentation may be
computational cognitive modeling, Cognitive Systems Research
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blind – possibly leading to the accumulation of a vast
amount of data without any apparent purpose or any
apparent hope of arriving at a concise and meaningful
understanding. This is a serious pitfall, and in fact descrip-
tive of some areas of empirical cognitive research (although
not all).

It is true that even pure experimentalists may often be
guided by their intuitive theories in designing experiments
and in generating hypotheses. So, they are not completely
blind. They may even be guided by specifically developed
verbal–conceptual theories (see, e.g., Reber 1989 for an
instance of such theories). However, in general, verbal–
conceptual theories are often vague, and only intuitively
suggestive – hence there lies another serious pitfall. With-
out detailed computational models, most of the details of
an intuitive or a verbal–conceptual theory are left out of
consideration. Nevertheless, there are many reasons to
believe that the key to understanding cognition is often in
fine details (see, for example, Sun et al., 2001, 2005), which
one may argue only computational modeling can help to
bring out. As pointed out by Hintzman (1990), ‘‘the com-
mon strategy of trying to reason backward from behavior
to underlying processes (analysis) has drawbacks that
become painfully apparent to those who work with simula-
tion models (synthesis). To have one’s hunches about how
a simple combination of processes will behave repeatedly
dashed by one’s own computer program is a humbling
experience that no experimental psychologist should miss”

(p. 111). Computational models provide algorithmic speci-
ficity: detailed, precisely specified, and carefully thought-
out steps, arranged in precise and yet flexible sequences.
Therefore they provide conceptual clarity and precision
at the same time. Without such detailed theories, empirical
work often suffers from the two pitfalls mentioned above
(even though vague forms of theories often do exist).

In this regard, let us look into some more details. There
are several fundamental problems associated with verbal–
conceptual cognitive theories. The first is the problem of
the inevitability of omissions and inconsistencies. As
human beings, cognitive scientists may fail to think of some
factors and circumstances in complex situations. Thus,
computational modeling and simulation may be needed
to analyze the details of a process or a mechanism, in order
to achieve a more thorough understanding (e.g., Sun et al.,
2005a). The second problem is that of conflicting processes
(e.g., Meyer & Kieras, 1997). There are different processes
involved to different degrees in generating one phenome-
non. A systematic and controlled analysis of all the
involved processes is the basis of understanding a phenom-
enon. Computational modeling and simulation may be
uniquely suitable for this purpose and thus indispensable
in this regard (as discussed earlier, towards the end of Sec-
tion 5). The third problem is that of variability of results.
Some cognitive mechanisms may behave quite differently
in different situations or with different parameter values.
Thus, computational modeling and simulations may be
needed to analyze the relevant parameters of a generic
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mechanism in a controlled manner, or to test it in a variety
of different situations (e.g., Sun & Naveh, 2004).

Another useful characteristic of computational model-
ing and simulation is that they often produce not just
one aspect of a situation but many different aspects. For
example, in a cognitive model of skill learning, we may
be dealing with accuracy of performance, response time,
eye movement, hand movement, memory retrieval, and
so on, all in one simulation model (e.g., Anderson &
Lebiere, 1998; Sun, 2002). This comprehensiveness of
computational cognitive modeling (especially when using
cognitive architectures), as opposed to the usual specificity
of mathematical theories, may be important for developing
broad cognitive theories.

Also, computational cognitive models are useful media
for thought experimentation. We may use simulations for
exploring various possibilities regarding details of a cogni-
tive phenomenon. As pointed out by Hintzman (1990), ‘‘a
simple working system that displays some properties of
human memory may suggest other properties that no one
ever thought of testing for, may offer novel explanations
for known phenomena, and may provide insight into which
modifications that the next generation of models should
include” (p. 111). (Mathematical models may be more lim-
ited and less useful in these regards, because of their usual
simplicity.)

In particular, computational models allow the running
of simulations for the sake of discerning consequences.
Without the level of details as specified in computational
models, it may be extremely difficult to see the conse-
quences and implications of certain aspects of a complex
model (Di Paolo et al., 2000). Sun and Zhang (2004) repre-
sents such an exploration. In the work, a number of simu-
lations were conducted with variations of a computational
cognitive model. Through systematic variations of a num-
ber of aspects of the model, conclusions were drawn
regarding what an appropriate model for the particular
task domain under consideration should be like with
regard to these aspects considered. In general, differing
details of different computational theories/explanations
can be tested and compared through running computa-
tional simulations and then examining the results from
the simulations. Even in the case when there is a mathemat-
ical model available, computational modeling and simula-
tion can still be useful for assessing the consequences of
various assumptions. Computational modeling and simula-
tion can be used to ascertain whether or not an assumption
is a key assumption. Beyond assessing the consequences of
individual assumptions, computational modeling and sim-
ulation are appropriate for assessing the interactions of
multiple assumptions. Since many cognitive theories (espe-
cially cognitive architectures) are based on multiple (often
independently made) assumptions, the empirical validation
of them, especially in terms of their interactions, is impor-
tant, and can be readily addressed through computational
modeling and simulation (Sun & Zhang, 2004; Sun, Zhang,
Slusarz, & Mathews, 2007). (This characteristic of compu-
computational cognitive modeling, Cognitive Systems Research
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tational cognitive modeling is relevant to addressing the
three fundamental shortcomings of verbal–conceptual the-
ories mentioned earlier.)

Even when a set of mathematical equations can be solved
analytically, there may still be use for computational mod-
els and simulations. When closed-form analytical solutions
exist, it appears that there is no need for simulation because
the solutions have been completely specified. However, the
dynamics implied by the equations may not be apparent.
Moreover, many people do not work well with mathemati-
cal equations, but most people are adept at understanding
concrete outcomes produced by a simulation (Keil, 2006).
Especially when visual graphics is produced, it is easier
for people to understand simulations, because it is often
easier to perform visual pattern matching and recognition
than abstract analysis (see Thagard, 2005 regarding the
importance of visual thinking in science). This aspect of
modeling/simulation is important particularly because cog-
nitive science is an interdisciplinary field and made up of
researchers with diverse background. Thus, there is cer-
tainly room for using computational modeling/simulation
for communicative and pedagogical purposes.

In sum, the value of computational cognitive modeling
(including using cognitive architectures) can be argued in
many different ways, including in practical ways. See also,
for example, Newell (1990), Sun (2002), Anderson and
Lebiere (1998), Sun (2006, 2008), and so on. Computa-
tional cognitive models are more than just simulation tools,
or programing languages of some sort (Newell, 1990). They
are theoretically pertinent, because they may express theo-
ries in a unique and, I believe, indispensable way. Cognitive
architectures, for example, may constitute broad, generic
theories of cognition (as recognized by many in the field).

9. Concluding remarks

One conclusion that may be drawn from the foregoing
discussions is that the theoretical and methodological sta-
tus of computational cognitive modeling is undoubtedly
significant. Computational cognitive modeling may pro-
vide not just tools, data generators, instantiations, or inte-
grations, but also theories in the full sense of the term. It
often provides detailed, mechanistic, process-based theo-
ries that enable the exploration of fine-grained details of
cognitive phenomena, and serves as a useful guide to exper-
imentalists who explore fine-grained details of cognitive
phenomena through experimental means. In addition, it
can be useful in a variety of other ways, theoretical or prac-
tical (Sun, 2008; Sun et al., 2005b). Computational models
can be compared to both mathematical theories and ver-
bal–conceptual theories, and excel as theories in terms of
expressiveness and precision.
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