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a b s t r a c t

The CLARION cognitive architecture has been shown to be capable of simulating and explaining a
wide range of psychological tasks and data. Currently, two theories exist to explain the psychological
phenomenon of performance degradation under pressure: the distraction theory and the explicit-
monitoring theory. However, neither provides a detailed mechanistic explanation of the exact processes
involved. We propose such a detailed theory within the CLARION cognitive architecture that takes into
account motivation and the interaction between explicit and implicit processes. We then use our theory
to provide a plausible explanation of some existing data. The data are simulated using the theory within
the CLARION cognitive architecture.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Research on performance in mental as well as physical tasks
has shown that accuracy of performance often tends to worsen
as anxiety increases (e.g., in high-pressure situations; as we see
them in our interpretations of the data of Beilock, Kulp, Holt,
and Carr (2004), Lambert et al. (2003)). Whether one refers to
this phenomenon as ‘‘choking under pressure’’ or ‘‘losing control’’,
anxiety (as in our interpretations of high-pressure situations) often
tends to hinder a person’s ability to perform optimally. What is
anxiety and why does it have such an effect on performance,
mechanistically?
Within the theoretical framework of CLARION (Sun, 2002,

2003, 2009), as we see it, experiences of anxiety are the
results of elevated levels of anxiety-inducing (avoidance-oriented)
motivational drives (as will be elaborated later; see (Sun, 2003,
2007, 2009)). When these drives are elevated by high-pressure
situations to a certain point, they tend to hinder performance.
It has been well documented that attention and control are a
finite resource (Navon, 1984; Shiffrin & Schneider, 1977). It has
also been shown that there are internal factors that can reduce
levels of attention and control (Lambert et al., 2003; Payne, 2001).
Anxiety-inducing motivational drives (Sun, 2007, 2009) can cause
a reduction of attention and control, and therefore performance
degradation on tasks when they are present in conjunction with
the execution of the tasks (Lambert et al., 2003).
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Attempts at explaining the phenomenon have led to competing
theories. One view is that normally people tend to prefer executing
tasks in a somewhat controlled (somewhat explicit) fashion, which
requires a certain level of attention but may also result in higher
accuracy (Sun, 2002). Anxiety (or other distracting factors) may
reduce attention and control (Eastbrook, 1959), thus limiting a
person’s ability to use explicit (controlled) processing, forcing
them to rely more on their implicit processes (Cohen, 1978),
thereby reducing performance (unless in very highly practiced
situations). This theory is commonly known as ‘‘the distraction
theory’’ (Lewis & Linder, 1997).
Another view is that tasks become implicitly encoded during

practice in a ‘‘top-down’’ fashion (Shiffrin & Schneider, 1977;
Sun, 2002) and after a certain period of time, people rely more
on the well-rehearsed implicit processes than explicit processes.
Under this view, anxiety (or other distracting factors) may affect a
person’s ability to rely on their well-rehearsed implicit processes
causing them to become more explicit and engage in step-by-
step monitoring (thus affecting both performance and response
time). This theory is referred to as ‘‘the explicit monitoring theory’’
(Beilock & Carr, 2001; Langer & Imber, 1979; Lewis & Linder, 1997;
Masters, 1992).
The following section will detail the explicit monitoring theory

and the distraction theory. We will then develop an alternative
mechanistic, process-based explanation of the phenomenon of
performance degradation under pressure, within the framework
of CLARION. This new CLARION based theory will be applied to the
simulation of the golf-putting task using the CLARION cognitive
architecture and the results will be matched to some data from
Beilock and Carr (2001).
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2. Some existing theories

Let us look into the golf-putting task from Beilock and
Carr (2001, experiment 3). In their experiment 3, participants
were asked to hit a golf ball at a red square from 9 different
positions. Participants were put in several different types of
context. Then, following training, they were presented with a
high-pressure scenario (aimed at causing presumably elevated
levels of anxiety). The results indicated that participants whowere
trained in a distraction-free (single-task) condition experienced
the performance degradation phenomenon in a high-pressure
(presumably high anxiety) post-test while those participants who
were trained in a self-conscious condition during training did not
suffer performance degradation.
Beilock and Carr’s (2001) results might be explained by the

explicit monitoring theory. It might be postulated that when
performance degradation occurred, it resulted from explicit
monitoring (e.g., in response to performance anxiety). Performance
pressure appeared to elicit maladaptive efforts to impose step-
by-step explicit control/monitoring over complex, well-rehearsed,
implicit procedures thatwould bemore automatic had such efforts
not intervened. Practice under the self-conscious condition served
to mitigate this tendency.
According to the explicit-monitoring theory, when a task that

is procedural and automated in nature (i.e., implicit) is affected
by certain situations (e.g., high pressure and thus high anxiety),
execution of the task will become more explicit. This is the ‘‘over-
thinking’’ phenomenon that happens sometimes when a person is
anxious, which often hampers performance.1
On the other hand, the distraction theory assumes that actions

chosen with a certain level of explicit processing (control, or
attention) should be more exactly arrived at and thus are often
more likely to be accurate or correct (Reber, 1989; Sun, Slusarz,
& Terry, 2005). Explicit processes are deliberate (controlled, or
explicitly attended to), and more cognitively accessible, making
thought processes involved behind decisions more traceable. In
contrast, implicit processes exist on a subconscious level, are
reactive in nature, and are more difficult (at least) to recall.
Processes involved in making decisions implicitly are often faster,
harder to explain, and are more susceptible to inaccuracies and
mistakes (Reber, 1989; Sun, 2002).
It is reasonable to suggest that in usual circumstances, people

will tend to prefer acting in a somewhat more precise and more
controlled (i.e., somewhat more explicit) fashion than in a purely
reactive and uncontrolled (i.e., purely implicit) manner (Curran &
Keele, 1993; Sun, 2002; Sun, Merrill, & Peterson, 2001; Sun et al.,
2005). However, distracting contexts (e.g., anxiety) may hamper
explicit processes (Sun et al., 2005), leading to more implicit
processing, which often hurts performance.
Note that the latter theory is perfectly consistent with the

basic postulates of the CLARION cognitive architecture as will be
discussed later (see also Sun, 2002, 2003), while the former theory
may also be incorporated into CLARION.
Within the theoretical framework of CLARION, it may be

hypothesized that participants’ performance worsened when
facedwith distracting contexts (including anxiety), maybe because
they were prevented from using a sufficient amount of explicit
processing as appropriate. In this regard, it might be assumed
that performance in the golf-putting task by participants under
the afore-mentioned experimental condition was not completely
implicit.While puttingmight be a rather implicit task for beginning
novices, it might become less implicit with practice (as explicit

1 In Beilock and Carr’s (2001) opinion, this was what was occurring when
performance degradation under pressure occurred in the putting task.

rules for performing the task are extracted in a bottom-up fashion;
see the discussion of ‘‘bottom-up learning’’, e.g., in Sun et al. (2001,
2005)).
The notion of bottom-up rule extraction learning has been

well documented in the literature, and in particular, within the
CLARION framework (see Sun, 2002, 2003; Sun et al., 2001, 2005).
In the case of the putting task (experiment 3 of Beilock & Carr,
2001), when a novice first begins, he or she is not equipped with
any information on how to effectively putt. However, through
trial and error, the person begins to learn implicit skills, and
in the process acquires simple explicit rules to help to increase
accuracy as training continues. The improvement in performance
seen during practice is, in part, the result of explicit rules being
extracted (in addition to primarily being the result of implicit
skill learning). As the number of rules increases and the types
of rules become more complex in nature, accuracy continues to
improve. Experienced golfers have extracted large sets of explicitly
accessible rules (or obtained them from outside sources such as a
coach) that can be recalled relatively easily. Ask any avid golfer to
describe the process they go through prior to taking a putt and one
will undoubtedly get a detailed answer (although theremight be an
inverted U curve here, i.e., a gradual increase of explicit knowledge
as experiences accumulate and then a decreasewhen one becomes
a true expert; Beilock & Carr, 2001; Dreyfus & Dreyfus, 1987).
However, admittedly, there is no guarantee that detailed explicit
knowledge that one possesses is actually used in action decision
making, as opposed to post hoc rationalization. Judging from
our own prior work and work by others, there are reasons to
believe that at least some of that explicit knowledge is indeed
used for actual action decision making (see, e.g., Mathews et al.,
1989; Reber, 1989; Sun et al., 2001, 2005; Willingham, Nissen,
& Bullemer, 1989). In general, people prefer to perform tasks
in a somewhat explicit fashion (i.e., mixing implicit and explicit
cognitive processes to a certain extent; Mathews et al., 1989;
Reber, 1989; Sun, 2002; Sun et al., 2005). Within the framework
of CLARION, a theoretical notion of ‘‘synergy’’ has been proposed
in this regard (as a potential explanation): mixing implicit and
explicit processes (with appropriate proportions) leads to better
performance than using either alone (see Sun et al., 2001, 2005
for data analysis and other evidence). This synergy is the ultimate
reason for people to use both implicit and explicit processes in
most skill domains (Sun, 2002).
CLARION (the computational cognitive architecture) may be

used to provide a process-based, mechanistic (i.e., computational)
explanation of the phenomenon (as well as other cognitive
phenomena and data), based on motivational processes. In
addition, while we refer to processing in terms of explicitness
and implicitness based on the CLARION framework (Sun, 2002;
Sun & Naveh, 2009), this phenomenon has been referred to with
different names by various researchers from different areas of
psychology (often with slightly different meanings). We hope
that our theoretical framework (CLARION, as will be discussed
below) will provide some clarification to these terms. Beyond
these relatively simple terminological issues, more importantly,
CLARION provides detailed (computational) interpretations that
help to shed new light on underlying processes (as will be
discussed later).

3. A CLARION-based theory

CLARION is a well-established cognitive architecture (Sun,
2002, 2003; Sun et al., 2001; Sun & Naveh, 2009; Sun et al.,
2005). It consists of a number of subsystems: the action-centered
subsystem (the ACS), the non-action-centered subsystem (the
NACS), the motivational subsystem (the MS), and the meta-
cognitive subsystem (theMCS). Each subsystem is divided into two
levels of representation. See Fig. 1.
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Fig. 1. The subsystems of CLARION. ACS stands for the action-centered subsystem, NACS stands for the non-action-centered subsystem, MS stands for the motivational
subsystem, and MCS stands for the meta-cognitive subsystem.

One fundamental assumption in CLARION is the distinction
between implicit and explicit processing. What we term explicit
processing is also known as ‘‘controlled’’ processing (Lambert et al.,
2003) or ‘‘working memory intensive’’ processing (Beilock & Carr,
2001; Beilock et al., 2004). Explicit processes are often rule-based,
require more time to obtain results, and sometimes require more
than one step to reach a conclusion (Sun, 2002). Similarly, implicit
processes are often referred to as ‘‘automated’’ processes. When
researchers refer to ‘‘a loss in cognitive control’’, what they are
referring to is an inability to use explicit processes in addition to
implicit processes. A loss of cognitive control, therefore, is equated
to using more implicit processes.
CLARION takes note of the fact that the inaccessible nature of

implicit knowledge is best captured by subsymbolic, distributed
representations (such as in a backpropagation network). This is
so because distributed representational units in (the hidden layers
of) a backpropagation network are capable of accomplishing pro-
cessing but are subsymbolic and generally not individually mean-
ingful (Rumelhart, McClelland, & The PDP Research Group, 1986).
This characteristic of distributed representations, which renders
the representational form less accessible, accords well with the
relative inaccessibility of implicit knowledge (Cleeremans, Destre-
becqz, & Boyer, 1998; Reber, 1989).
In contrast, explicit knowledge may be best captured in

computational modeling by symbolic or localist representations
(Sun, 2002; Sun et al., 2005), in which each unit is more
easily interpretable and has a clearer conceptual meaning. This
characteristic of symbolic or localist representations captures
the characteristic of explicit knowledge being more accessible
and more manipulable (Sun, 2002). Accessibility here refers to
the direct and immediate availability of mental content for
the major operations that are responsible for, or concomitant
with, consciousness, such as introspection, forming higher-order
thoughts, and verbal reporting, as well as meta-level control and
manipulation.
The dichotomous difference in the representations of the two

different types of knowledge led to a two-level architecture,
whereby each level uses one kind of representation and captures
one corresponding type of process, implicit or explicit.

While this two-level structuring is the key foundation of
CLARION, additional distinctions, for instance, between action-
centered and non-action-centered subsystems (the ACS and the
NACS), are also made. The present paper focuses only on the
interaction between implicit and explicit processing within the
action-centered subsystem (the ACS). The ACS consists of implicit
processing (in the bottom level of the two-level architecture) in the
form of a backpropagation network and explicit processing (in the
top level) through explicit rules (Sun, 2002). Explicit knowledge (at
the top level of the ACS) may be learned in a bottom-up fashion
(i.e., extracted from the implicit knowledge at the bottom level,
using, e.g., the RER algorithm of Sun et al. (2001)), or from external
sources, while implicit knowledge (at the bottom level of the ACS)
may be learned in a trial-and-error fashion through interacting
with a task (using, e.g., the Q-learning or simplified Q-learning
algorithms), or through assimilating explicit knowledge (from the
top level). See Sun (2002, 2003) for full details.2
In particular, for learning implicit knowledge at the bottom

level of the ACS, Q-learning or simplified Q-learning may be used
(as described and justified in Sun (2002, 2003)). Using either
of these two algorithms, implicit knowledge may be learned by
adjusting numerical weights (which are to be used for action
decision making) gradually and incrementally on the basis of
reinforcement signals (which indicate whether actions selected
and performed are successful or not), within a backpropagation
network. The backpropagation learning algorithm is applied for
the sake of adjusting the internal weights of the network, based
on the reinforcement signals received, in accordance with the
Q-learning or simplified Q-learning algorithms (which essentially
calculate the amount of adjustments from the reinforcement
signals received; Sun, 2002, 2003).
Among other learning algorithms for acquiring explicit knowl-

edge at the top level of the ACS, there is the Rule-Extraction-
Refinement algorithm (RER). Using RER, explicit rules are learned
at the top level by using information from the bottom level, which

2 For information about the non-action-centered subsystem (the NACS), and its
interactions with the action-centered subsystem, see Sun (2002, 2003).
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captures a bottom-up learningprocess—an implicit-to-explicit ex-
plication process (Sun et al., 2001). The basic idea of the RER al-
gorithm is as follows: If an action decided by the bottom level is
successful (i.e., if it satisfies a certain criterion), then the agent con-
structs a rule (with its action corresponding to that selected by the
bottom level and with its condition specifying the current state),
and adds the rule to the top level. Then, in subsequent interactions
with the world, the agent refines the constructed rule by consider-
ing the outcome of applying the rule: If the outcome is successful,
the agent may try to generalize the condition of the rule to make it
more universal; if the outcome is not successful, then the condition
of the rule should be made more specific. These operations above
are guided by some statistical criterion (i.e., the ‘‘information gain’’
measure; see Sun et al. (2001) for details).
When both implicit and explicit knowledge is available in the

ACS for deciding on an action to be performed, the two types
of knowledge are ‘‘integrated’’, for example, through stochastic
selection of one type or the other (Sun, 2002, 2003).
In addition to the action-centered and non-action-centered

subsystems, there is yet anothermajor component in CLARION: the
motivational subsystem (the MS). This subsystem is responsible
for motivational states (comprised of ‘‘drives’’ and ‘‘goals’’; Sun,
2009). In CLARION, drives are fundamental motivational forces
behind action decision making (as well as behind non-action-
centered processes). Goals are determined from drives, to provide
specific and tangible motivation and context for actions. Actions
are selected (within the ACS) based on their ‘‘values’’ (i.e., Q -
values) with regard to the current goal and the current state (see
Sun, 2002 for details). Such ‘‘values’’ (or evaluations of actions) are
behind decisions to take specific actions.
CLARION includes generic and essential drive representations

in the motivational subsystem (see Sun, 2003, 2009). When the
environment causes anxiety, anxiety can be thought of as the
biological/physiological consequence of a heightened (avoidance-
oriented) drive strength level (see the discussion of drives in Sun,
2003, 2007, 2009). Thus, in simulation, the simulated participant’s
drive strength levels are set in the MS based on the experimental
context.
In conjunction with the motivational subsystem, the meta-

cognitive subsystem (the MCS) uses the resulting drive strengths
from the motivational subsystem to perform a number of backend
actions. One such type of MCS action is goal setting based on
drives. Goals are important within the action-centered subsystem
(the ACS) as it helps to determine the specific actions chosen.
Another type of MCS action is parameter setting within other
subsystems. Parameters for reasoning, action competition and
selection, various types of learning, etc. may be determined by the
MCS based on motivational states.
In particular, anxiety levels (as reported by the MS in the form

of avoidance-oriented drive strengths) are used to determine the
likelihood of performing a task in a more explicit or more implicit
way in the ACS, which is decided by the MCS (Sun, 2009). The
working hypothesis in this regard is that when anxiety is at a
relatively low level, it can help to increase control in the ACS action
decision making (i.e., the ACS becomes more explicit); however,
when anxiety hits a certain high level, it begins impairing control
(because, in such situations, there is an evolutionary advantage
to favor faster and more automatic [i.e., implicit] processes; Sun,
2009; Weiner, 1992).
The equation used to represent this phenomenon is an inverted

U curve (cf. Hardy & Parfitt, 1991). The curve begins at x = 0 at
some point before the top of the curve, which represents the level
of controlwhen the drive strength is very low. As the drive strength
increases (i.e. as anxiety increases), the level of control will follow
along what appears approximately as an inverted U (see Fig. 3).
Let us now look into the golf-putting task (Beilock & Carr, 2001)

to see how our theoretical and computational framework can be
applied to this task.

4. Experiment & simulation

4.1. Experiment

Beilock and Carr’s (2001) experiment 3 was (in part) based on
a golf-putting task. Participantswere undergraduate studentswith
little or no golf experience. Participantswere randomly assigned to
the single-task condition, the self-conscious condition, or the dual-
task condition. 18 participants took part in each condition. Because
we were interested in the effects of drives on decision making,
we focused on the results of the single-task and the self-conscious
condition (and we dealt only with the putting task here).
The experiment examined the accuracy of golf putting over a

series of trials. The objective was to putt a golf ball as accurately
as possible from nine locations on a carpeted indoor putting green.
The locations were 1.2, 1.4, or 1.5 m from the target. The target
was a red square, on which the ball was supposed to stop. All
participants putted from the nine locations in the same randomly
determined order. A standard golf putter and ball were provided.
Participants completed 270 training putts. The 270 training

putts were broken into three blocks of 90 putts each. The ex-
perimenter recorded the mean distances of the first and last
18 training putts respectively. The training was followed by an
18-putt low-pressure (presumably low-anxiety) post-test and
then an 18-putt high-pressure (presumably high-anxiety)
post-test.
The factors used to create the self-conscious condition were

introduced during the training phase. Participants in the single-
task condition performed the task during the training phase
exactly as it was just described. Participants in the self-conscious
condition, during the introduction of the training task, were
informed that they would be filmed using a video camera. They
were told that golf coaches were videotaping them for later review
in order to gain a better understanding of how individuals learn
to putt. The camera was set up on a tripod that stood on a table
directly in front of the participants (1.8 m away). The camera was
turned on and pointed at the participants during the entire training
phase (except during short breaks between blocks of putts). After
the training phase, the camera was turned off and pointed away
from the participants (where it remained for the remainder of the
experiment).
The low-anxiety post-test was the same for all groups. To

participants in the single-task condition, the 18 low-anxiety putts
following the training seemed like just another block of putts.
Participants in the self-conscious condition were not made aware
of any changes except the fact that the camera had been turned off
and pointed away.
The high-anxiety post-test was identical for all groups.

Participants were informed of their mean putting performance for
the last 18 putts in the training phase and were provided with
a scenario designed to create high pressure (and consequently
high anxiety presumably). Specifically, participants were told that
if they could improve their accuracy by 20% in the next set of
putts, they would receive $5. The monetary award was also a team
effort — Each participant was told that he/she had been randomly
paired with another participant, and in order to win the money,
both had to improve by 20%. In addition, it was revealed that the
other participant had already improved by the required 20%. The
participants then took an 18-putt (high-anxiety) post-test.
The results from this experiment were as shown in Fig. 4

(Beilock & Carr, 2001). Basically, as predicted and explained earlier,
participants’ performance worsened during the high-pressure
(high-anxiety) post-test for the single-task condition (but not
the self-conscious condition). Detailed statistical analysis of the
human data (Beilock & Carr, 2001) will be presented below along
with the simulation results.
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Fig. 2. The x-axis represents pre-existing bias (0 ≤ x ≤ 5); the y-axis represents
drive strength (0 ≤ y ≤ 1). The topmost function is for the single-task high-anxiety
post-test. The second function is for the self-conscious high-anxiety post-test. The
next function is for the self-conscious training phase. The bottommost function is
for the single-task training phase, the single-task low-anxiety post-test, as well as
the self-conscious low-anxiety post-test.

4.2. Simulation setup

For this simulation, in the motivational subsystem, only one
drive is relevant: ‘‘honor’’, which is roughly related to the need to
avoid blame in this case (Sun, 2003, 2007, 2009). The drive strength
was obtained using a pre-trained backpropagation network with 6
inputs, 10 hidden nodes, and 1 output, with the default parameter
settings (learning rate = .01, momentum = 0). The first 5 nodes
of the inputs were used to specify the experimental conditions
(including type of training, type of post-test, and training versus
test). The final input node specified the individual difference
variable that indicated an agent’s predisposition toward becoming
anxious.
During the training phase of the single-task condition, drive

strengths of the agents were determined using: tanh(.1x) (where
x is the individual difference variable; 0 ≤ x ≤ 5). This func-
tion was also used for the low-anxiety post-test of both the single-
task and the self-conscious condition (because the situations were
essentially the same as the training phase of the single-task con-
dition). During the training phase of the self-conscious condition,
drive strengths of the agents were determined using: tanh(.15x),
because of the (presumably) higher anxiety levels of the self-
conscious training condition. During the high-pressure (high-
anxiety) post-test, for those agents trained in the self-conscious
condition, the function changed to: tanh(.17x), in response to the
anxiety inducing cues (presumably). For those agents trained in
the single-task condition, during the high-pressure (high-anxiety)
post-test, the function changed to: tanh(.5x), in response to the
anxiety inducing cues (presumably). Note that the function used
by the self-conscious group during the high-anxiety post-test in-
creased to be only slightly higher than the function used during the
training phase. This is because the agents in the self-conscious con-
dition were exposed to an anxiety-inducing situation during train-
ing for an extended period of time, and therefore, aswe have previ-
ously discussed, the effect that the high-anxiety post-test had was
presumably mitigated. (Within CLARION, this can be explained by
the depletion of an internal ‘‘deficit’’ variable related to the drive
in question, as a result of prolonged exposure to anxiety-inducing
situations; see Sun (2009) for further details.) These agents were
certainly affected; however, the effect was not nearly as strong as
for those agents trained in the single-task condition where nomit-
igating factor was present during training. A graphical representa-
tion of the drive strengths, as assumed within the CLARION based
model, can be seen in Fig. 2.
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Fig. 3. The x-axis represents the drive strength from the MS (0 ≤ x ≤ 1); the
y-axis represents the degree of control (explicit processing) determined for the ACS
(0 ≤ y ≤ 1).

The MCS of CLARION was used to determine the proportion of
explicit versus implicit processing in the ACS (i.e., the degree of
cognitive control). Specifically, the MCS was pre-trained mapping
drive strengths to explicitness of processing using an inverted
U curve (as discussed earlier). The MCS determines, using the
inverted U curve, the probability that the agent would use the
top level of the ACS (i.e., explicit processing) when performing the
task. The probability output was obtained using a backpropagation
network with 1 input, 4 hidden, and 1 output nodes, using the
default parameter settings (learning rate = .01, momentum = 0),
with the input to the network being the drive strength from theMS.
Fig. 3 shows a graphical representation of this basic assumption of
CLARION (where the MCS was pre-trained to select probabilities
between 0 and 1 based on the parabolic equation: −0.38x2 +
0.20x+ 0.58, where x is drive strength).
The ACS was set up the same way for all agents. The bottom

level of the ACS was set up with a backpropagation network
with 12 inputs (representing information concerning the putting
positions and their distances to the target), 5 hidden nodes, and 3
outputs, with the default parameter settings (learning rate = .01,
momentum = 0). The 3 outputs represent three possible putting
actions: swing easy, swing medium, swing hard. The network
started with no knowledge of the proper input-output mapping,
andwas trained through interactingwith the task (using simplified
Q-learning as explained earlier; Sun et al., 2001); eventually,
implicit knowledge of putting was captured by the structure and
weights of the network.
At the beginning of the task, no explicit rules existed at the

top level of the ACS, because participants in Beilock and Carr’s
(2001) experiment 3 had no prior golfing experience or knowledge.
Rules were extracted from the bottom level of the ACS during
the course of learning the task (basically, a rule was extracted
when an action caused a putt to land within 5 centimeters of the
target; see the brief explanation of the RER algorithm earlier; see
the full description of the RER algorithm in Sun et al. (2001), Sun
(2003)). The ACS attempted to generalize the rules after they were
extracted (with the RER algorithm; see Sun et al. (2001, 2005) for
details). The rules were encoded as ‘‘condition→ action’’ pairs (for
example, ‘‘if the distance is 1.4 m, then swing medium’’).
The accuracy (the distance of the ball from the target) was

calculated (based on a pre-specified function) and reported back
to the ACS, which used that score as the reinforcement signal for
reinforcement learning in the bottom level (using the simplified
Q-learning algorithm; see Sun, 2003; Sun et al., 2001), as well
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Fig. 4. The graph on the left shows the results from the simulation. The graph on the right is the human data from Beilock and Carr (2001).

as indirectly for rule learning in the top level (using the RER
algorithm; see Sun et al. (2001)).3
Approximately the same number of simulated participants

(agents) was used for each condition during the simulation as the
original human experiment (25 simulated participants for each
condition).

4.3. Simulation results & comparison

During the simulation, the accuracy of the first 18 and the last
18 putts of the training phase was recorded along with the 18
putts for each of the two post-tests. The simulated participants
of both the single-task and the self-conscious condition improved
with practice as evidenced by a 2 (single-task vs. self-conscious)
×2 (mean distance from target for the first vs. the last 18 putts
of the training phase) ANOVA, revealing a highly significant main
effect of practice (F = 297.097, p < .001) and no training
condition/practice interaction (p = .27), which is consistent with
Beilock and Carr’s (2001) results (F = 85.03, p < .001 for the
effect of practice).
In the simulation, accuracy in the low-anxiety post-test was

essentially the same between the single-task and the self-
conscious condition (M = 17.57 and M = 18.09 respectively,
p = .493), the same as in the human data (Beilock & Carr,
2001). In the high-anxiety post-test, a significant difference existed
between the two conditions, as evidenced by a one-way ANOVA
(F = 9.169, P = .004), the same as in the human data (F =
4.57, p < .015 in Beilock and Carr (2001)). In addition, a 2 (training
condition)×2 (post-test) ANOVA revealed a significant interaction
of training condition and post-test (F = 7.656, p = .008). This
finding matched that found by Beilock and Carr (2001) (F =
7.37, p < .002).
Direct analysis of putting performance within each condition

showed that the accuracy of the simulated single-task group
significantly declined from the low-anxiety to the high-anxiety
post-test (t = −2.618, p = .015), as was demonstrated by Beilock
and Carr (2001) in the human data (t = −2.21, p < .04). The
accuracy of the simulated self-conscious group did not change
significantly between the two post-tests (t = .969, p = .342),

3 In general, reinforcement signals are determined by the MCS based on
motivational states in the MS. In this case, the most relevant drive in the MS is
‘‘achievement and recognition’’ (see Sun, 2009 for details).

similar to the human data (t = 1.81, p < .09 in Beilock and
Carr (2001)), although, consistentwith Beilock and Carr (2001), the
direction of the change suggested a slight improvement.
A graphical representation of the simulation results can be

seen in Fig. 4, along with the corresponding graph of the human
performance from Beilock and Carr (2001). Looking at the figure,
it should be fairly clear that the results from the simulation
match the human results from Beilock and Carr (2001) very
closely. This suggests that the specific, detailed, and process-based
interpretation of the human results presented in the present paper
has merit.
While the explicit-monitoring theory seems like an intuitive

conclusion for explaining performance degradation in low-level
tasks like putting, our simulation has shown that explicit moni-
toring is not necessarily the only viable explanation. Explicit pro-
cessing requires higher levels of control than implicit processing.
When a person is distracted or anxious, the amount of control he
or she hasmay be negatively impacted. This may reduce a person’s
ability to rely on more intensive, more effortful explicit processes.
The core of the explicit-monitoring theory as it relates to perfor-
mance degradation under pressure points to ‘‘over-thinking’’ as the
main culprit of performance degradation. However, what is occur-
ring may not be ‘‘over-thinking’’ but instead an inability to engage
explicit processes to an appropriate and sufficient extent.
As has been pointed out earlier, there may be a processing

difference between relative novices (using a mixture of implicit
and explicit processes) and true experts (being equally proficient
in either a somewhat explicit or a completely implicit mode, or
even performing the best when completely implicit/automated).
In this regard, in the literature, highly practiced, automated expert
skills sometimes show somenegative effects of explicitmonitoring
under some circumstances (Lewis & Linder, 1997; Masters, 1992),
while less rehearsed tasks or skills may often show the effects
of distraction in the sense of the distraction theory (Ashcraft &
Kirk, 2001; Lewis & Linder, 1997; Tohill & Holyoak, 2000). There is
no sufficient evidence in this case to conclude that those human
participants in this experiment (i.e., experiment 3 of Beilock &
Carr, 2001) had reached that expert level (because, e.g., what
might appear to be asymptotic performance may turn out to be a
temporary performance plateau that, with much further training,
may lead to still better performance), and therefore there is no
sufficient evidence to conclude that ‘‘over-thinking’’ in actuality
hurt their performance. These simulation results above seem to
suggest that our theory based on CLARION (more akin to the
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distraction theory) might be properly used to interpret at least
some performance degradation phenomena seen in experiments
involving sensorimotor tasks, as well as in other types of tasks.4
In addition, we have looked into some other data sets,

experiments, and tasks relevant to this phenomenon, and our
theory and model (based on CLARION) appear to be able to
account for all of them (details omitted due to length limits; see
Wilson, Sun, and Mathews (in preparation)). Note that even in
some arithmetic tasks, the effects of anxiety/distraction have been
observed (Beilock et al., 2004). The CLARION based model has
successfully captured such data (details omitted; Sun, Zhang, &
Mathews, 2009; Wilson et al., in preparation).

5. Conclusions

CLARION provides a computational explanation of the phe-
nomenon of performance degradation under pressure on the basis
of motivation (i.e., drive levels). While the suggestion that moti-
vations (e.g., drives) affect performance is not novel, the present
work has taken a step toward explaining exactly how and in what
way performance is affected by motivational and environmental
contexts (see Sun, 2009 formore details). Within the framework of
CLARION, we conjecture that the effects of distractions/anxiety act
upon implicit and explicit processes in ways that can be described
as a function of the context.
CLARION, in relation to this work, focuses on the interaction

between motivation (drives) and cognition (Carver & Scheier,
1998; Sun, 2009;Weiner, 1992). In this way, it embodies, explains,
and substantiates some previous theories naturally (and this does
not rule out other possible motivation-cognition interactions in
this or other circumstances).
In relation to the point above, the present paper provides

a peek into how drives and motivations act upon a cognitive
system, and it does so in a quantitative, process-based, and
mechanistic (i.e., computational) way (see Sun, 2003, 2007, 2009
for more details). Therefore, it provides a detailed, process-based
explanation. In this regard, CLARION may eventually provide a
more general and yet detailed picture of self-monitoring and self-
regulation (in a generalized sense) in cognitive agents (see, e.g.,
Sun, 2003, 2009; Zimmerman, 2000).
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