
Intro to CLARION 1

An Introduction to CLARION

Ryan Allison

Rensselaer Polytechnic Institute

Intro to CLARION 2

An Introduction to CLARION

Psychologists have been puzzling over the workings of the mind for

centuries. There has been a multitude of methods for analyzing and modeling

the cognitive functioning of humans and animals. One method, known as

cognitive modeling, uses computers to simulate human cognition and behavior.

Researchers go about this by writing software code. Using a programming

language (like LISP), they can develop functions and procedures which perform

much like humans would. Efforts have even been undertaken to develop whole

architectures which try to duplicate the functioning of the human mind. By

comparing the results of simulations using these programs with experiments

involving humans, cognitive scientists can justify the procedures they develop.

These cognitive architectures are symbolically based, however, and do not

attempt to mimic the human mind on the organic level. But by understanding the

processes and functions of the mind, we will be closer to understanding how the

brain functions biologically.

 One such cognitive architecture, the topic of this paper, is called

CLARION. This stands for Connectionist Learning with Adoptive Rule Induction

ON-Line. Development of this project has been led by Dr. Ron Sun, who has

written a guide of CLARION entitled A Tutorial on CLARION 5.0 (2003). The

purpose of this paper is to provide a simpler, less technical introduction to

Intro to CLARION 3

CLARION and is based on the tutorial supplied by Dr. Sun. A copy of this tutorial

can be currently accessed at http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf.

General Architecture

 Before discussing the workings of each part of CLARION, we must first

describe the general structure involved. A major question in the development of

a cognitive architecture is how the basic units of thought are going to be

represented. Science has yet to find, at least completely, how nature stores and

manipulates information within the brain, so cognitive scientists must develop

systems which represent, on a working level, these units. By this, it is meant that

the knowledge systems may not be directly identical to human knowledge

representation, but are functionally very similar. It is the hope that science can

synthesize the workings of the human mind without having to understand the

exact biology involved.

Simulating knowledge representation runs in to difficulty since there is not

necessarily a single type of knowledge. In CLARION, it is split into implicit

knowledge and explicit knowledge (Sun, 2003). Both represent different types of

information and therefore must be handled differently. For instance, implicit

knowledge is not directly accessible, but can be used in computation. Rumelhart

et al, Sun, Reber, Seger, and Cleeremans et al have provided support in regards

to the argument that a backpropagation network can represent the subsymbolic,

distributed representation of implicit knowledge (as cited in Sun, 2003). Sun

(2003) draws from Rumelhart et al and Sun when he explains that the units in a

Intro to CLARION 4

backpropagation network “are capable of accomplishing computations but are

subsymbolic and not individually meaningful; that is, they generally do not have

associated semantic labels,” (2003, p. 5).

A backpropagation network is a type of neural network in which the

connections between nodes are adjusted to produce the optimal output. A neural

network is a collection of nodes which are connected to each other by pathways

that allow a signal. They are based on the biology of the brain where special

cells, neurons, are connected to each other and pass an electrical signal. The

following figure is a simplified example of a neural network:

In this diagram, each circle is a “node” and the lines between them represent the

connections. This is a small representation of a network, in actuality there would

be thousands, if not millions of nodes and connections.

In humans, the nodes are neurons, the pathways are synapses, and the

signal is an electrical impulse. In computers, the nodes are small pieces of

Intro to CLARION 5

memory, the pathways are references to the location of the nodes in memory,

and the signal is a small amount of data. A signal traveling down different

pathways and different nodes will produce different outputs. Adjusting the

network consists of training, namely, repeatedly matching a specific input to a

specific output and adjusting the weights of the connections between them.

Once a network has been trained to a given input, the signal will travel the

weighted connections to the trained output. The following figure repeated below,

but modified to demonstrate:

Here, a specific path has been trained so that when the input node is triggered,

the signal travels through the network to the trained output node. Future training

might strengthen this particular path even more, or, if a new response is desired,

it might lead to a new connection to a different output node.

 This is just like in the brain, where a stimulated neuron will pass its signal

to the next neuron, which will then pass it to the next, and so on until it reaches

Input

Output

Intro to CLARION 6

the destination cells. For instance, a decision to move your arm up would involve

sending a signal through the neurons that have been trained to connect the brain

to the muscle in your arm. The more this route is used, the stronger the

connections between the neurons become and the easier for this path to be

used.

Just like neurons, nodes are not individually useful. Only when the node

is a part of a network can it be constructive. Thus, a network is a system of

many, small parts which are not functional on their own, only as a group.

Basically, it allows for the computation of information (via controlling the pathway

from input to output), but not direct access to the individual components involved

in the computation. Since implicit knowledge represents the lower-level, almost

automatic processing of information, it is easy to see why backpropagation

networks are used.

 Explicit knowledge, on the other hand, is more appropriately represented

in a symbolic or localist way (Clark and Karmiloff-Smith, as cited in Sun, 2003).

According to Sun, symbolic representation means that “each unit is more easily

interpretable and has a clearer conceptual meaning (namely, a semantic label),”

(2003, p. 6). So, unlike implicit knowledge, explicit knowledge consists of more

substantial pieces of information which can be directly accessed and

manipulated (Smolensky, Sun, as cited in Sun, 2003). This knowledge needs to

be easily accessible since it is the basis of complex thought. While implicit

knowledge represents sub-conscious information, explicit knowledge represents

more conscious information. Explicit knowledge within CLARION is thus divided

Intro to CLARION 7

into rules and chunks, which are easier to explain after introducing subsystems

and modules (Sun, 2003).

 Since both types of knowledge are necessary to develop a model of

cognition, it is appropriate to include both distributed and localist representation

(Sun, 2003). The developers of CLARION chose to use both types of

representation, in the form of a two-level architecture, so that implicit and explicit

knowledge are both handled properly. Sun, Dreyfus and Dreyfus, and

Smolensky have given support in favor of this two-level architecture (as cited in

Sun, 2003).

 Within each level, there exist numerous modules that handle the functions

of cognition. In addition, these modules are parts of separate subsystems. Each

subsystem thus has a module (or modules) for implicit and explicit processes

(Sun, 2003). A subsystem refers to a set of functions which handle a particular

aspect of cognition. For example, there is the action-centered subsystem. This

subsystem contains all the processes which govern the actions of the cognitive

model. It consists of action-centered modules which exist in either the implicit

level or the explicit level. Another subsystem, the non-action-centered

subsystem, also contains modules in both levels of representation. Sun explains

that “the reason for having both action-centered and non-action-centered

modules (at each level) is because, as it should be obvious, action-centered

knowledge (roughly, procedural knowledge) is not necessarily accessible

(directly),” (2003, p. 6). So, while action-centered knowledge is usually implicit, it

Intro to CLARION 8

is not necessarily so, as is non-action-centered knowledge not necessarily

explicit. The following figure may help to clarify the organization.

This figure shows how each sub-system has modules in both levels of the

knowledge architecture. In addition to the action-centered sub-system and the

non-action-centered subsystem, there are two other subsystems. These are the

motivational subsystem and the meta-cognitive subsystem. The purpose of the

motivational subsystem is to guide the agent’s overall behavior. It achieves this

by forming goals and sending them to the goal structure. The meta-cognitive

subsystem is the main controller of the cognitive architecture. It manages the

processes of the other subsystems so as to provide structured behavior.

Within the modules of the subsystems are the elemental parts of

knowledge within CLARION, dimension/value pairs, rules, and chunks (Sun,

2003). The modules in the bottom-level of a subsystem are made of

dimension/value pairs. They are of the format “(dimension, value).” A dimension

would be an aspect of an object and the value(s) would be the adjective or

Top-level
(Explicit)

Bottom-level
(Implicit)

Action-
centered

Non-action-
centered

Knowledge

Module(s) Module(s)

Module(s) Module(s)

Sub-system

Intro to CLARION 9

intensity. For example, “(height, tall)” would be describing something or

someone that is tall. The modules which contain these pairs represent implicit

knowledge.

The input into CLARION, known as the state of the world, is a series of

dimension/value pairs, by which they are describing how and what things are in

the environment. The “state of the world” refers to the environment and condition

the agent is in at a given time. More specifically, it consists of the objects in the

environment which the agent senses, as well as information about items in

working memory and the current goal. It can be thought of as a snapshot of

everything around and within the agent. The senses convert their raw input (light

for eyes, sound waves for ears, etc.) into dimension/value pairs. These pairs, in

addition to the dimension/value pairs of the working memory and goals,

constitute the current world state, which is then used as input for the action-

centered subsystem.

 For explicit knowledge, chunks and rules are used. They exist in the top-

level modules of each subsystem. Chunks serve as a way of tying

dimension/value pairs into a group so that they describe a particular thing (Sun,

2003). Each chunk has an identifier so that it is unique. Sun provides an

excellent example of a chunk, “table-1: (size, large) (color, white) (number-of-

legs, four)” (2003, p. 63). In his example, the chunk is named “table-1” and has

three dimension/value pairs, each one describing an aspect (dimension) of the

table. Another chunk, maybe “table-2,” could have entirely different values for

those dimensions, and thus be a different object in the world state.

Intro to CLARION 10

Rules are the other base elements used in CLARION’s explicit knowledge

representation. Rules differ slightly based on which subsystem they are in (Sun,

2003). For action-centered modules, they are action rules. If they are in non-

action-centered modules, they are associative rules. To generalize them, rules

are basically conditional statements which serve to output information that is

specific to the module it is in. What is meant by a conditional statement is a

simple test to see if the requirements (stated in the “condition” of the rule) are

met. A simple, real-world example is this: IF [The door is open], THEN [Shut it].

The first part of this rule ([The door is open]) is the condition. If the current state

of the world that the agent is in has a door that is open, then this condition would

be true. Whenever the condition of a rule is true, the output at the end of it is

triggered (or in this case performed). If the condition is false (i.e. there is no door

or all doors are closed), then the rule is simply ignored and the action is not

triggered. An action rule in CLARION is much the same as the example above,

albeit more detailed as to the condition and result.

Rules have dimension/value pairs as their condition (represented by a

chunk), so if the dimension/value pairs from the current world state match the

dimension/value pairs of the rule’s condition, then the output of the rule will be

initiated (Sun, 2003). For example, if the decision/value pairs in an action rule’s

condition were to match the decision/value pairs of the world state, then an

action recommendation would be triggered. Associative rules also have

dimension/value pairs as conditions, but their output is in the form of a memory

chunk. In both cases of rules, the dimension/value pairs of the condition are

Intro to CLARION 11

associated into one or more chunks. The output of rules are also chunks, but are

handled differently depending on the type of rule. The reasoning behind this will

be addressed in more detail later, as will the reason why the conditions are

chunks. As a note, the world state can (and usually will) have many more

dimension/value pairs than a rule and still activate it, as long as the rule’s

condition pairs are all matched. In other words, for every dimension/value pair in

the rule’s condition, there has to be a dimension/value pair in the world state that

is the same. In truth, CLARION does support the option of allowing partial

matching (where not all values have to be matched exactly) (Sun, 2003).

However, in an effort to keep this document as simple as possible, the logic will

not be covered here. The reader is encouraged to refer to Sun’s tutorial (2003) if

understanding of this process is desired.

As stated before, CLARION has a two-level knowledge architecture, top-

level explicit knowledge and bottom-level implicit knowledge. These two types of

knowledge are linked together by the relationship between dimension/value

pairs, chunks, and rules. The dimension/value pairs exist in the bottom-level

backpropagation networks that were described earlier. Each separate dimension

and each separate value is a node in a backpropagation network and represents

a piece of implicit knowledge (Sun, 2003). In order to form a dimension/value

pair, the dimension node is linked to the value node. Chunks exist in the top-

level and therefore represent explicit knowledge, but are linked to their

associated dimension/value pairs in the bottom-level. More specifically, the

Intro to CLARION 12

chunk nodes are linked to the dimension and value nodes. The reasoning

behind this will be addressed in later sections.

An individual dimension or value node by itself is meaningless, but when

associated with others via a chunk, it becomes a part of an item of explicit

knowledge. The name of the chunk serves as the semantic label for the concept

represented by the associated dimension/value pairs in the bottom-level (Sun,

2003). Rules consist of chunks, so are therefore also present in the top-level.

However, the chunks are associated with dimension/value pairs, so rules are

also connected to the bottom level. In this manner, the designers of CLARION

have been able to represent implicit and explicit knowledge accurately, as well as

allowing them to interact.

Action-centered subsystem

Structure

The action-centered subsystem serves as the part of the mind which

controls the physical and mental actions of the agent. This would include such

things as interaction with the environment (external actions), manipulation of

items in memory (working memory actions), and adjustments to goals (goal

actions) (Sun, 2003). More specifically, the action-centered subsystem takes in

data and produces recommendations, from which the best action is chosen. The

resultant chosen recommendation is then performed by the appropriate functions

which govern the respective actions. For example, a recommendation to pick up

an object, if chosen to be executed, would trigger the activation of base-level

Intro to CLARION 13

motor control. Or, if the recommendation to access a memory was chosen, the

retrieval of the desired information would be triggered.

Before any actions can be taken by the agent, the current state of its

environment must be taken in. As stated earlier, the environment is perceived by

the agent’s senses and then converted into dimension/value pairs. These pairs,

along with working memory items and the current goal, are then sent to the

action-centered subsystem so that actions can be chosen and performed (Sun,

2003). Within the action-centered subsystem, the state, memory items, and

current goal are sent to both top-level and bottom-level modules. The modules in

each level produce action recommendations based on the information given.

From all of the action recommendations which were triggered, the best one is

selected and executed. This does not signal the end of the process, however.

The agent now perceives the new world state, as well as any possible

reinforcement. Reinforcement is a factor of learning in the action-centered

subsystem and used to modify the agent’s future responses. This is achieved

through adjusting the connections in the backpropagation networks (for the

bottom-level) and modifying the action rules (for the top-level) (Sun, 2003). Once

this has been completed, the agent can then start a new round of action decision

making.

Bottom-level

 The action-centered subsystem at the bottom-level (implicit) has been

designed to be highly modular. This means that there can be numerous

Intro to CLARION 14

backpropagation networks, each being specific to a task or a stimulus (Sun,

2003). These networks can be classified as external action networks, working

memory action networks, or the goal action network. External action networks

are those actions whose results will affect the world state (i.e. the agent’s

environment). The working memory network contains those actions which

manipulate the items in working memory. Likewise, the goal action network has

the actions which will alter the goals of the agent. It is actually not required to

have separate working memory networks and goal action networks, both can be

a part of the external action networks (Sun, 2003). There can be, however,

multiple external action networks. This allows external action networks to

become specific to particular situations or responses. Much like human reflexes,

these networks produce a response (output) given a stimulus (input) without any

conscious thought by the agent (like recoiling if a hand touches fire).

 By applying the process of learning, these networks can be modified and

the responses of the agent changed. Some of these networks, however, could

represent the reflexive, innate actions of instinct (Sun, 2003). These fixed

networks would be the results of the evolutionary process shaping the behavior

of the agent’s ancestors. Those agents which were “stronger” than others,

because of some ability or reflex, would pass this on to the descendants. This

ability, if it was extremely beneficial to the agent, would eventually become a

fixed part of the agents’ action networks. Of course a simulation involving

CLARION would not have ancestors and therefore not be a product of evolution.

Intro to CLARION 15

However, since the goal of CLARION is to represent the human mind, it must

therefore take into account these instinctual products of evolution.

Top-level

 The top-level (explicit) of the action-centered subsystem is also made of

multiple modules. These, however, are not as numerous as the bottom-level

modules, since explicit knowledge is not as modularized (Fodor, as cited in Sun,

1983). “That is, explicit knowledge may be viewed as residing in a more

centralized and less compartmentalized structure,” (Sun, 2003, p. 7). So, unlike

the bottom-level, there are not individual modules to handle specific instances of

explicit knowledge, but more generalized ones. For instance, while performing a

new task, an agent might use top-level modules which were used in previous,

similar tasks. Let’s say that an agent has experience taking car engines apart.

On encountering a new, unfamiliar engine, the agent would not automatically

know how to disassemble the engine, but might use knowledge from existing top-

level modules to formulate a plan of action.

 The input to the top-level of the action-centered modules is the same as

that given to the bottom-level. The world state, along with the items in working

memory and the current goal, is compared with the rules in the top-level. Each

rule, also like the bottom-level, gives an action recommendation if triggered.

Since action recommendations are divided into external, working memory, and

goal types, the rules can also be grouped accordingly. Thus, there are external

action rules, working memory action rules, and goal action rules (Sun, 2003).

Intro to CLARION 16

 As mentioned earlier, the condition of each rule is compared to the world

state. If the dimension/value pairs of the rule are matched, then the action

recommendation of that rule is activated. Remember that the action

recommendation of a rule is also a chunk, linked to the action nodes in the

bottom-level networks. After each rule has been compared, all of the activated

action recommendations are then considered and the best one selected. The

method of selecting the best rule can be governed by a utility measure (Sun,

2003). The utility measure would be a mathematical function which evaluates

how constructive each action recommendation would be and assigns them each

a “score.” The recommendation with the highest “score” would be the action that

is the most beneficial to the agent. If a utility measure is not used in choosing a

recommendation, then random selection can be used (Sun, 2003). After

choosing the best recommendation, that chunk activates the action nodes in the

bottom-level that it is linked to. The following figure is offered to help in

understanding this process and is a rough approximation of how the respective

elements are associated.

Intro to CLARION 17

 This figure demonstrates the relationships between the pieces involved in

action-decision making. The world state nodes (dimension/value pairs) are

compared to the condition nodes (dimension/value pairs) of a rule in the bottom-

level. If they are matched, then the condition nodes activate the condition chunk

in the top-level that they are linked to. This condition chunk then activates the

conclusion chunk (i.e. an action recommendation) it is linked to. As the box

shows, the condition chunk and the conclusion chunk it is linked to form a rule. If

the conclusion chunk of this rule is selected, then the conclusion chunk would

activate the action nodes it is linked to in the bottom-level. Lastly, these action

nodes would activate the base level functions which they are associated with (i.e.

muscle movement, memory management, etc.).

Condition Chunk

Action Rule

Action Recommendation
Chunk

World State
Nodes

Condition
Nodes

Action Nodes

Top-level

Bottom-level

Action

Intro to CLARION 18

Learning and Reinforcement

 In order for an agent to continuously exist in a changing environment, it

has to be able to learn. The process of learning involves altering the top-level

rules and bottom-level network connections so as to produce new (and hopefully

beneficial) behavior. Learning in the bottom-level can be achieved through

several different methods. The first of such methods is known as Q-learning

(Watkins, as cited in Sun, 2003). This is an algorithm which uses estimation of

reinforcement to influence behavior. The current state and the state after a

particular action is executed are compared. A value is then calculated which

represents how beneficial this action would be to the agent. The agent

determines how beneficial an action is by calculating reinforcement (Sun, 2003).

Reinforcement is the result of a function which factors in the goals and desires of

the agent, as well as the state of the world (including the agent). Sun explains,

“reinforcement signals are derived from measuring the degree of satisfaction of

the drives and the goals of the agent,” (2003, p. 111). By comparing how close a

state is to the goal of the agent, the reinforcement function produces a value that

represents how desirable a state is. A state that is closer to achieving a goal

than another state would be more desirable and so have a higher reinforcement.

The action recommendation that leads to the state with the highest reinforcement

would be the “best” and therefore be chosen. This is much like the

psychological concept of operant conditioning, where reinforcement in the

environment increases or decreases behavior. In Q-learning, the total estimated

reinforcement before and after an action is performed is used to develop Q

Intro to CLARION 19

values. The Q values represent the predicted total reinforcement and thus

provide a method for determining sequential actions (Sun, 2003).

 In addition to Q-learning, there are other methods of learning within the

action-centered subsystem. One such method is that of top-down assimilation

(Sun, 2003). In this, externally given explicit knowledge that has been encoded

in the top-level is used to generate bottom-level networks. The purpose of this is

to take top-level rules which have been used repeatedly and represent them in

the backpropagation networks of the bottom-level. By taking this knowledge and

representing it in the bottom-level, the agent makes the rule almost automatic,

and thereby more efficient (Anderson, Dreyfus and Dreyfus, as cited in Sun,

2003). An example of this would be learning to use a screwdriver. When first

used, a person would have to use their top-level knowledge to formulate a

procedure (i.e. hold screwdriver, put to screw, twist handle, etc.). Initially, this

might be difficult for an individual to perform. Mistakes might be made (i.e.

turning handle in wrong direction), but reinforcement from correct actions would

strengthen the proper sequence. With continued practice, the procedure could

be assimilated into the bottom-level, so that using the screwdriver would be

almost thoughtless. This can be seen by observing a novice who must

concentrate fully on the task and comparing them to an expert (like a carpenter)

who is able to perform the procedure while talking to someone else.

 The following figure may help in understanding top-down assimilation. It is

based on the figure used before to demonstrate an action rule, but has been

modified to show the result of top-down assimilation.

Intro to CLARION 20

In this figure, you can see that, after top-down assimilation, the condition nodes

and action nodes of a rule have become linked directly on the implicit level. Now

when the condition nodes are activated, they immediately activate the linked

action nodes. This process is more efficient by saving time and mental effort.

With the condition and recommendation linked like this, the top-level action rule

can eventually be removed.

 Yet another learning method in the action-centered subsystem is that of

imitative learning (Sun, 2003). This involves an agent observing another agent

performing a task and then trying to mimic it. As opposed to top-down

assimilation, this process is bottom-up, meaning bottom-level knowledge is used

to formulate top-level knowledge. Sun explains that for the bottom-level to

initially acquire the knowledge, there needs to be a unique reinforcement function

(2003). This reinforcement function assigns value to those actions, in a given

Condition Chunk

Action Rule

Action Recommendation
Chunk

World State
Nodes

Condition
Nodes

Action Nodes

Top-level

Bottom-level

Action

Intro to CLARION 21

state, which are the same as another agent’s actions, in the same given state.

This special reinforcement means that actions that imitate another agent are

more likely to be selected. Notice that they are more likely to be chosen, not

necessarily chosen. This is so that the agent will not automatically perform an

imitative action rather than a different, already known action which provides a

better result. So imitation is encouraged, but not at the sacrifice of performance.

 Once the action is imitated by the agent, reinforcement is sensed and the

backpropagation network is updated. Specifically, the connections between the

nodes which were activated by the imitative action are strengthened. The more

the given state is paired with the imitated action, the stronger the connections will

become and the more likely the action will be performed the next time the given

state occurs. Now that the action is stored in the bottom-level, the top-level can

extract rules based on it. Imitative learning can also be applied directly to the top

level, meaning that rules are created which are based on the direct observation

of an agent by another agent (Sun, 2003). This can be thought of as a more

conscious form of imitation, where the agent actively decides to mimic the

actions of another agent.

 The process of rule extraction from the bottom-level to the top-level of the

action-centered subsystem is handled by the Rule-Extraction-Refinement

algorithm (Sun, 2003). This algorithm takes a successful action that was

recommended by the bottom-level, and develops a top-level rule that represents

it. The new rule is then revised based on future states of the world. Depending

on if the rule is successful or not, it will be expanded or narrowed. The agent will

Intro to CLARION 22

attempt to apply a successful rule to broader situations, meaning more

opportunities for it to be applied. A rule that is not successful, however, may be

too general and so must be focused more (Sun, 2003). Focusing a rule involves

removing a value from its condition so that it will have a decreased chance of

being activated. A rule is discarded when all the values in the condition have

been removed, since there is no state that will ever be able to activate it (Sun,

2003). Mathematical functions are used to evaluate the extracted rules and

determine if they should be revised.

 Another type of learning that exists in the top-level of the action-centered

subsystem is Independent Rule Learning (Sun, 2003). This is a slightly different

method of generating rules for the top-level. Instead of using the bottom-level to

form new rules, Independent Rule Learning formulates them through a sort of

random generation. The algorithm, which is similar to the one for extracting

rules, uses pre-specified templates to create subsets of rules. These subsets are

then tested to see if they prove to be useful. Subsets which are found to be

ineffective are deleted (Sun, 2003). As with the rules generated by rule

extraction, these rules can be adjusted so that they apply to more universal or

more specific situations.

 Fixed rules exist in the top-level of the action-centered subsystem and

represent knowledge that has been given from a source outside of the agent or

acquired from past situations (Sun, 2003). Rules of this type can also represent

instinctual knowledge that results from the evolutionary process. In this regard,

fixed rules are similar to the fixed networks of the bottom-levels. With fixed rules,

Intro to CLARION 23

top-down assimilation can apply the top-level knowledge to the bottom-level. As

with Q-learning, repeated use of the fixed rules strengthens the connections of

the nodes in the bottom-level. Eventually, the appropriate backpropagation

network can automatically generate the same results, but more efficiently

(meaning less mental effort). Sun notes that fixed rules are more versatile and

can represent more complex concepts than other rules (2003). He also explains

that this is akin to the psychological concepts of “schemas” (Arbib, Dretcher) and

“abstract behaviors” (Mataric, as cited in Sun, 2003).

Action Selection

 As explained before, both the top-level and bottom-level of the action-

centered subsystem control the actions of the agent. Both levels are fed the

current state information and each produces recommended actions which are

appropriate. Not all of the recommended actions can be performed, however, so

the agent must pick among them. There exist several possibilities for integrating

and then selecting from these action recommendations. In one method, top-level

rules are analyzed and if there are no appropriate ones, a recommendation is

selected from the bottom-level (Sun, 2003). In another method, the

recommendations from both levels are combined and then a selection is made.

While not covered here, Sun’s tutorial (2003) explains these methods as well as

the mathematical calculations involved. For the purpose of this paper, it is

sufficient to know that the recommendation chosen, regardless of being from the

top-level or bottom-level, is deemed the choice which will produce the most

Intro to CLARION 24

favorable situation for the agent, given the current internal and external state of

the world.

Working Memory

 Another important part of the CLARION architecture is the working

memory. This serves as a medium between the cognitive processes and the

long-term memory store. In humans, this is analogous to short-term memory. It

is a temporary storage for a limited amount of data which is currently being used

by the action-centered modules. The short-term memory of humans is also of a

limited size, commonly believed to be around seven “items”. Storing information

in the working memory is “for the express purpose of facilitating subsequent

action decision making and/or reasoning,” (Sun, 2003, p. 50). Pieces of

information are pulled from the long-term memory store, placed in the working

memory, used, and then removed. This interaction with the working memory is

achieved by working memory actions activated by the action-centered subsystem

(Sun, 2003). Since it only holds a limited amount of data, information must be

removed in order to allow new information to be inserted. Also, the items in

working memory are susceptible to decay. This is similar to the concept of

memory decay in humans. As time passes, unused items in working memory

lose strength and eventually are removed. In order to keep an item in working

memory, it has to be refreshed by a working memory action. Also, it is important

to note that the designers of CLARION have made working memory “used solely

for action-decision making, not for general memory access,” (Sun, 2003, p. 53).

Intro to CLARION 25

In CLARION, working memory is a separate system, but is considered a part of

the action-centered subsystem.

Goal Structure

 In order for an agent (human or cognitive model) to complete complex

tasks, there needs to be a process dedicated to directing the agent’s actions in

completing the task. This process would need to keep track of the current goal

the agent is trying to achieve, as well as if the goal has been reached or not. In

addition, it would also need to be able to manage multiple goals as well as sub-

goals. Returning to the previous example of a human disassembling a car

engine, the agent must have an overall goal of taking it apart, as well as many

sub-goals that must be completed first (like removing the air filter, removing the

intake manifold, etc.). Thus, a goal structure is required so as to guide the

agent’s actions in a constructive manner (Sun, 2003). Sun gives an example of a

goal structure, the goal stack (Anderson, Anderson and Liebre, as cited in 2003).

Goal actions, from the action-centered subsystem, are the ways in which the

agent can manipulate the goal structure. As with working memory, the goal

structure is a separate system, but considered a part of the action-centered

subsystem.

The goal stack is a way of organizing goals and subgoals into an ordered

list. When a main goal is given to the goal stack, it is placed in the list. If the

main goal cannot be accomplished, then a subgoal is created. This subgoal’s

purpose, in the end, is to make the main goal achievable. It is put on the goal

Intro to CLARION 26

stack, by a goal action, on top of the main goal and becomes the currently active

goal. The agent then attempts to satisfy this goal. If it cannot, another subgoal is

created which serves to aide in achieving the previous subgoal. It is put on the

top of the stack (above the previous goal) and becomes the currently active goal.

This continues until there is a subgoal which can be achieved or cannot be

broken into smaller goals. If the latter is the case, then the current goal (or

subgoal) fails. In either case (success or failure), the current goal is removed

from the top of the stack and the next goal becomes the active one. The process

of checking the attainability of a goal is repeated with respect to the now current

goal. This continues until the main goal is a success or a failure.

As a simple example, let’s say the main goal is disassembling the car

engine. It is placed on the goal stack and checked to see if it can be satisfied. It

is not, so a subgoal (say, remove the air filter) is created and put on the stack as

the current goal. This goal is checked and fails since the air filter cannot be

removed. A new sub goal is created, namely, remove the wing-nuts securing the

air filter. It is placed on the stack and becomes the current goal. This goal is

attainable since there is an action which can satisfy it. The action is performed

and the current goal (remove wing-nuts) is deleted from the top of the stack,

making the previous goal (remove air filter) the current one. The process is

repeated as before. Assuming nothing is rusted together (thereby causing a goal

to be unattainable), the car engine will be taken apart piece by piece until it is

disassembled. This example shows how a goal structure is necessary in order

for the actions of an agent to be productive.

Intro to CLARION 27

Another goal structure that CLARION can use is the goal list. This

structure is a linear list of goals, like the goal stack. Also like the stack, goal

actions are required in order to alter it. It is different from the goal stack,

however, in that each goal item can be accessed randomly (Sun, 2003). The

major difference between the two structures is in how a goal becomes the current

goal. When there is more than one goal in the list, each item competes against

each other to become the current goal. In addition, the “strength” of the each

goal item fades over time, so older goals are weaker than newer goals. In this

way, the goal list generates a procedural order much like the goal stack (Sun,

2003). If a new goal has to be generated, because the existing ones are not

attainable, it is more recent and therefore stronger than the previous goals. It

remains the current goal until it is completed or a newer goal is created and

therefore stronger than it. As active goals are completed, they are deleted. This

allows the most previous goal to be the strongest and, thus, become the current

goal.

The accessibility of older goals means the goal list is more versatile than

the goal stack. It allows switching between goals as necessary. If the

environment changes so that an older goal is now achievable, the strength of

said older goal will increase and (possibly) become the current goal. This

resumption of older tasks is not possible in the goal stack without first completing

the goals on top of it. Like the goal list, humans are able to switch between goals

as desired or needed. This aspect of the goal list makes it more similar to human

Intro to CLARION 28

behavior than the goal stack and therefore a better choice for a goal structure

(Sun, 2003).

Non-action-centered subsystem

Structure

 Having described how the action-centered subsystem is constructed, the

structure of the non-action-centered subsystem will be addressed. While the

action-centered subsystem encompasses the processes which govern the

actions of an agent, the non-action-centered subsystem contains what can be

considered general knowledge (Sun, 2003). Sun explains that general

knowledge includes what is known as “semantic” memory, “i.e., general

knowledge about the world in a conceptual, symbolic form,” (2003, p. 8). He also

points out that semantic memory is not solely in the top-level, but included in the

bottom-level as well. This is the type of knowledge which includes ideas, objects,

and facts. For example, if you thought about an apple, you would probably have

a mental image of an apple form in your mind. This is because you have stored

knowledge in your head which represents your concept of “an apple.” The word

“apple,” a mental picture of an apple, and the taste of an apple, are all pieces of

information that you have stored in your mind that symbolize an aspect of the

real-world object. These specific attributes would be located in the bottom-level.

By being linked to the top-level knowledge, these attributes are associated with

each other and form the mental concept of “an apple.”

Intro to CLARION 29

Top-level

 The top-level of the non-action-centered subsystem within CLARION is

known as the general knowledge store (Sun, 2003). This is where the explicit,

declarative knowledge is located. It is similar to the top-level of the action-

centered subsystem in several ways. One way is that the top-level consists of

rules and chunks. The chunks of the general knowledge store are linked to

dimension/value pairs, just like in the action-centered subsystem. Whereas

chunks were connected to action recommendation chunks in the action-centered

subsystem, declarative knowledge chunks in the non-action-centered subsystem

are connected to other declarative knowledge chunks (Sun, 2003). These

connections between chunks are called associative rules. Activating a chunk will

in turn activate the conclusion chunks it is linked with via associative rules, as

well as the dimension/value pairs in the bottom-level. Likewise, activating the

dimension/value pairs in the bottom-level network will activate the linked chunks

in the top-level. In this way, explicit ideas are linked to other ideas.

Bottom-level

 The bottom-level of the non-action-centered subsystem consists of

networks that represent implicit declarative knowledge (Sun, 2003). As in the

action-centered subsystem, it consists of networks of dimension/value pairs.

These pairs can become mapped to each other so that an input of certain

dimension/value pairs produces an output of associated dimension/value pairs.

One possible use of these associative memory networks is to provide a method

Intro to CLARION 30

of predicting future states (Sun, 2003). Training would involve linking the

dimension/value pairs of the input to a specific state. Then, if only a portion of

the dimension/value pairs are supplied to the input, the links would indicate the

most likely state.

 These networks could also serve as the location of knowledge which has

been used repeatedly and often. By matching a given input to a given output, the

knowledge would be almost automatic. For instance, this might apply to word

recognition. An experienced reader does not have to consciously think about

each word in the sentence and remember what it is. The sensory input is sent by

the action-centered subsystem to the associative memory networks. The

dimension/value pairs of the input would be linked to the dimension/value pairs of

the chunks which represent that word. This would explain why those learning a

new language must perform much more mental effort in recalling data on a given

word when compared to those who are fluent.

Reasoning

 Reasoning is the process by which new ideas or relationships are

formulated from already known ones. In order for reasoning to work, ideas must

exist as well as relations between these ideas. Thought can then move from

idea to idea along these associations, until a desired conclusion is reached.

Reasoning in CLARION involves using associative rules and chunks to draw

conclusions. At the beginning of the reasoning process, input is sent to the non-

action-centered subsystem (Sun, 2003). Depending on the type of input, it is

Intro to CLARION 31

either sent to the top-level or the bottom-level. Chunks that are sent as input

activate chunks in the general knowledge store, whereas dimension/value pairs

sent to the associative memory networks activate other dimension/value pairs.

Once the respective pieces of knowledge (chunks or pairs) are activated, they

proceed to activate their associated chunks and pairs. In the end, an input to

either the general knowledge store or the associative memory networks will

activate items in both the top-level and the bottom-level.

 In the associative memory networks, the triggered dimension/value pairs

take part in associative mapping, where the product is activation of output

dimension/value pairs (Sun, 2003). Meanwhile, the associative rules for all the

activated chunks in the top-level are executed and conclusion chunks are the

result. This is referred to as forward chaining reasoning. Once the conclusion

chunks and the output dimension/value pairs are determined, another round of

activation occurs. This time, the conclusion chunks activate their related

dimension/value pairs in the bottom-level and the output dimension/value pairs

activate the associated chunks in the top-level. It is then possible for the process

to be repeated with the new chunks and dimension/value pairs.

 There is an optional method of reasoning in CLARION called similarity-

based reasoning (Sun, 2003). This reasoning uses inference to create

associations between chunks. A chunk is compared to another chunk using an

algorithm. If they are sufficiently similar, one chunk is said to infer another.

When reasoning occurs and chunks are activated, the inferred chunks may also

be activated. This allows a broader spectrum of conclusions to be drawn.

Intro to CLARION 32

Learning

 Since the non-action-centered subsystem encompasses both top-level

and bottom-level knowledge, there are separate processes for learning in each.

At the top-level, explicit knowledge can be encoded based on information

attained from outside the agent (Sun, 2003). This information would be read by

the senses and sent to the action-centered subsystem. There, a decision would

take place to encode the information into memory. In order for the non-action-

centered subsystem to encode externally given knowledge, the action-centered

subsystem must first convert it into a piece of explicit knowledge. The

associative rule or chunk can then be sent to the non-action-centered subsystem

and saved to memory. In addition, the action-centered subsystem can encode

states and actions performed as chunks, which are also then sent to the non-

action-centered subsystem (Sun, 2003). By storing the states and actions

experienced by the agent, it can have a reference to draw on in future decision

making.

 Other explicit knowledge can be derived from the bottom-level networks.

This bottom-up learning is much like the rule extraction of the action-centered

subsystem (Sun, 2003). Within the associative memory network, associative

mapping strengthens the connections between input and output dimension/value

pairs. This also creates an association between the chunks in the top-level

general knowledge store. An associative rule is created where the chunk of the

input pairs is the condition, and the chunk of the output pairs is the conclusion.

Intro to CLARION 33

As in the action-centered subsystem, a rule was created to associate the chunks

involved in a bottom-level network mapping.

The learning of implicit declarative knowledge requires the use of a special

memory known as episodic memory. Simply, this memory stores information

about experiences (Sun, 2003). As actions are taken and goals met, new

information is added to the episodic memory, for reference later. This memory is

stored separately, as explained by Sun, “we feel that the distinction between

episodic memory and semantic memory in CLARION is justified, because of the

need to separate knowledge regarding specific experience and knowledge that is

more generic and not experience-specific,” (2003, p. 8). So the long-term

memory stores symbolic representations of objects (or concepts) with no regard

to context, while the episodic memory stores information regarding how and

when the agent interacted. In addition, the episodic memory contains the

associations used and learned in the past. These associations are randomly

chosen when implicit learning is to be initiated (Sun, 2003). They are then fed to

the associative memory networks as the input and output. Those associations

which are beneficial are then trained into the network.

Motivational subsystem

 The motivational subsystem is the part of cognition which supplies the

reasons behind an agent’s actions. While goals are used to direct actions on a

task-based level, drives are what determine the actions overall (Sun, 2003).

They are the reason behind why certain goals are chosen as the active goal.

Intro to CLARION 34

Drives are related to needs, namely, drives are the desire to meet an agent’s

needs. The needs of an agent are usually considered those things which are

necessary for the agent to survive. One such need, at least for a human, is the

need for water. As the need for water increases, so does the drive to satisfy it.

Eventually, the motivational subsystem will deem it necessary to acquire water

and so recommend goals to achieve this.

Some drives are more important than others, and so they can be arranged

in a hierarchical manner (Sun, 2003). Drives which are higher in the hierarchy

are more likely to be satisfied at a given moment than a lesser drive. An

example of this would be the need to avoid danger and the need to reproduce.

An agent would not reproduce if it would put it in serious danger. The more

important need of self-preservation overcomes the need to mate.

 The motivational subsystem also takes into account the accessibility of a

need when it chooses goals (Sun, 2003). This means that the object that the

drive requires must be available to the agent in order for the drive to be satisfied.

Setting a goal to satisfy a need will not succeed if the object is not present.

Thus, different goals may have to be set so that the agent can find the object in

need, and then satisfy the drive. Basically, if the agent requires water, but there

is no water, than the agent must first find water. As you can see, depending on if

the need is available or not will determine the goals set. Also, if a need is not

available but not drastically desired, then the motivational subsystem may try to

satisfy other needs which are accessible (like eating food). Sun refers to Tyrell

when he explains the requirements of drives:

Intro to CLARION 35

• “Proportional activation” – How strong a drive to satisfy a need is

should be related to how badly the need is required. The more

desperate the need, the stronger the desire to satisfy it.

• “Opportunism” – The availability of a need satisfier should influence

the decision process. In other words, needs that can be satisfied

immediately should have more consideration than other needs.

• “Contiguity of actions” – An agent should finish the process of

satisfying a drive before switching to another.

• “Persistence” – Drives should be satisfied to the point that

maximizes the time between satisfying. This means that an agent

should not minimally meet a need and then proceed to another. If

this were the case, the agent would continuously be moving

between needs and only satisfying a bit at a time. Thus, the agent

should fill itself to a good amount before moving on.

• “Interruption when necessary” – There are cases, however, where

the process of meeting a need should be stopped and another one

started. A good example is that of an animal drinking at a pond. If

it is attacked, the need to avoid danger should become the

prominent drive.

• “Combination of preferences” – The needs of all the drives should

be considered when setting goals so that multiple drives can be

met at once. Sometimes it is best for an agent to satisfy many

needs marginally instead of one need excessively. For example, it

Intro to CLARION 36

might be best for a hungry animal to stay in its present location

where there is food and water, instead of going to a place where

there is more food but no water. (2003)

Using these requirements, the designers of CLARION have created a

motivational subsystem which properly represents the need-satisfying behavior

of humans (as well as animals).

Meta-Cognitive subsystem

 The meta-cognitive subsystem is the main controller of cognition. It

regulates the activities of all the other subsystems (Sun, 2003). It does this so as

to make the interaction of these subsystems more efficient. For example, it is

this subsystem which adds goals to the goal structure in response to the drives of

the motivational subsystem. The meta-cognitive subsystem takes into account

the various drives and their strengths, and determines which one should be the

current focus. It can even combine drives so that multiple needs can be met,

pending the situation allows it (Sun, 2003). The meta-cognitive subsystem also

handles the passage of information from the action-centered subsystem to the

non-action-centered subsystem. When a memory action is triggered in the

action-centered subsystem, the meta-cognitive subsystem transfers the

information to the non-action-centered subsystem. The meta-cognitive

subsystem governs which learning methods are to be employed, as well as when

(Sun, 2003). Depending on the situation, certain learning methods may be

applied as opposed to others. In addition, parameters of the action-entered and

Intro to CLARION 37

non-action-centered subsystems are set by it (Sun, 2003). By adjusting the

parameters of the separate subsystems, the meta-cognitive subsystem can

modify the individual processes in each, increasing the overall efficiency of the

system. These are just some examples of the responsibilities of the meta-

cognitive subsystem. By controlling the activities of the individual subsystems,

the meta-cognitive subsystem is able to join them into a functional model of

cognition.

 One other aspect of the meta-cognitive subsystem is that it filters

information when it is passed between subsystems (Sun, 2003). It does this by

suppressing certain dimensions and letting others go through. Suppressing a

dimension/value pair is done by removing the activation supplied to it, thereby

preventing it from activating anything else it is connected to. Other

dimension/value pairs can be focused onto by increasing their activation. The

decisions as to what to suppress are made by the meta-cognitive subsystem

based on information gathered from various sources. The working memory, the

current goal, and drives are all examined, as well as other locations (Sun, 2003).

Based on these factors, the meta-cognitive subsystem can choose what

information is most pertinent and then focus the cognition of the agent to that.

This prevents unnecessary cognitive effort to be performed on information that is

not currently relevant. Suppressing dimensions is just another way the meta-

cognitive subsystem can direct cognition.

 Yet another function of the meta-cognitive subsystem is the calculation of

reinforcement resulting from drives (Sun, 2003). It observes the current state of

Intro to CLARION 38

the agent and determines if the current action satisfies one of the needs. If a

need is satisfied by the action, reinforcement is generated and applied. Thus,

actions which satisfy needs are more likely to be chosen and used by the agent.

 As you can see, the meta-cognitive subsystem can control aspects of

every other part of cognition. It can make adjustments, focus attention, defocus

attention, set goals, and provide reinforcement to behavior. This is done so that

the separate subsystems can function together as an efficient whole.

Conclusion

 All of the subsystems of CLARION have been described as well as their

approximate functioning. The reader can see that each subsystem is specialized

and intended for a specific purpose. This is just like in the human brain, where

there are separate parts which handle specific tasks. The action-centered

subsystem handles the actions of the agent, the non-action-centered subsystem

handles the general knowledge of an agent, the motivational subsystem contains

the innate drives of the agent, and the meta-cognitive subsystem regulates the

flow of them all. Information about the world is taken in by the senses, filtered by

the meta-cognitive subsystem, and then sent to the action-centered subsystem.

There, possible actions are determined based on the state of the world. From

these actions are chosen those that will benefit the agent, based on the goals,

drives, and reinforcement. The actions are performed, whether it is an external

action, accessing a working memory, or retrieving data from long-term memory.

If long-term memory is to be accessed, the meta-cognitive subsystem filters the

Intro to CLARION 39

information as it goes from the action-centered subsystem to the non-action-

centered subsystem. Meanwhile, learning is taking place in both subsystems in

various forms. Once the actions are complete, the agent can take in the new

state of the world and yet again decide how to behave. These parts interact

together to form a cognitive architecture.

 Each aspect of the CLARION architecture is designed to represent an

aspect of cognition within the human mind. These are integrated in the most

accurately known way. However, it is far from perfect. There still exist many

unknowns in human cognition, so CLARION will have to continue evolving.

Through continued experimentation, both human and simulated, more

information can be gathered as to the workings of an intelligent agent. This can

be applied to modifying CLARION so that it more accurately represents the

human mind.

Intro to CLARION 40

Works Cited

Sun, R. (2003). A Tutorial on CLARION 5.0. Retrieved on October 15, 2003

from Rensselaer Polytechnic Institute, Department of Cognitive Science Web

site: http://www.cogsci.rpi.edu/~rsun/sun.tutorial.pdf

