
Ian Keyworth (keywoi@rpi.edu)
Ray Coulter (coultr@rpi.edu)
Rory Perner (perner@rpi.edu)
Chris Mui (muic@rpi.edu)

Game Design Document for Nova Radix

I. Artist Statement/Philosophy/The WHY Factor (why create this game? why would
someone want to play it?)

There are several reasons people would play Nova Radix. For one, people like simple
games they can pick up as a distraction from homework, and this is easily one of those
games – so long as the opening levels teach the essential skills well enough. People also
generally enjoy physics. While this is not the most physics intensive or accurate game,
mastering and manipulating momentum and gravity are fun. The mechanic is also
interesting, and while not entirely new, this execution opens many design paths and
offers a challenging and fun break from reality.

II. Predecessor or previous games/ distinctive factors in this genre

The game was most inspired by Shift, a flash game developed by Armor Games. In Shift
game, you were given the power to inverse the floor and background (so one became the
other) and the level turned on its head. Mechanics and level designs are partially inspired
by Portal, by Valve, which has pushed the realm puzzle-games into a new dimension.

During our development process, Shift 2 was released. One of the new mechanics
introduced was to rotate the room. Fortunately for us this was only done at specific
squares and in specific directions, so despite the fact that the square room rotated and
gravity changed – like in our game – our concept remained mostly safe.

There have been rotation games done in the past, such as “Spin the Black Circle,”
developed by BubbleBox.com, where you have free rotational control of the maze – to
any degree, mind you, so more precise than the Nova Radix – to move a ball to the exit
through gravity while avoiding spikes and other obstacles. Nova Radix is different from
this mainly in the sense that the player has total control over themselves, whereas in
Black Circle it can get incredibly frustrating when you don’t spin the room just right for
the ball to avoid destruction, despite having a more interesting physics engine.

And Yet It Moves, an independent game sponsored by ImpulsProgramm, also rotates the
world map 90 degrees to solve puzzles. The difference here is that the game plays much
like the typical scrolling platformer, where the player only sees a small portion of the
map at any given point; you are also able to die by falling too far or for too long. Nova
Radix is a more direct puzzle game in the sense that the entire world is viewable at once,
so the player can plan the whole route to victory without pushing a button. The puzzle
oriented goal of Nova Radix also means that dying from falling would be more frustrating

since it is not as foreseeable, and the focus should be on avoiding the clearly marked
hazards instead of the potential perceptions. The main goal is to finish the puzzle, not to
“not die”.

III. Target Audience

Anyone who likes games that are easy to pick up, or mentally challenging and creative.
Although this could theoretically apply to any age beyond the point at which children are
capable of understanding spatial orientation and gravity, the game is more focused
towards a teenage sort of audience. The most evident result of this is the character, since
the concept art portrayed a more intense yet loose appearance, reflective of teenagers.
The gameplay itself, however, has a much broader range since it twists the physical
concept of gravity that we all fundamentally understand, and in that sense we hope as
many people as possible can enjoy the game.

IV. Introduction & Story

Though there is no defined story, the game takes place on some sort of space station. The
closest correlation to a story arch is introduction of mechanics and innovative uses of
those build a difficulty curve and fun experience through the course of the game.

V. Immediate and long term projected socio/cultural project impact

The immediate impact is that people have yet another quick online game to play around
with. In the long term it will hopefully help bring puzzle games back to the forefront of
peoples’ minds instead of FPS games or the like.

VI. Delivery System & Requirements

Have Java Runtime Environment enabled.

VII. Interface

On the screen is nothing but the level and your guy. Controls are introduced through the
opening levels using special backgrounds with instructions. Keyboard keys control the
character and the abilities.

The Level Editor interface will shrink the level enough to fit tiles and options at the
bottom and side of the screen. Click on a tile to select the type you would like to place,
then click on the corresponding grid, using the same rotation keys to rotate the piece that
are used to rotate the room in-game. Save, Load, Test and Exit options appear at the
bottom. It should be noted that while the level editor is mostly functional for our own
level design purposes, it is extra in terms of the game itself, and was not able to be added
for the symposium section.

VIII. User Interaction

Arrow keys control the character, Spacebar jumps, and A, S, and D rotate the room
counterclockwise, 180, and clockwise respectively; it helps to think that the left-hand
letter (‘A’) makes the left side of the room rotate down, and the right-hand letter (‘D’)
rotates the right side downward. In the Level Editor, the mouse is used for selecting and
placing objects, and A, S, D are used to rotate the objects. Other controls that have been
added are M to toggle the music on and off, R restarts the level, and K skips the level. It
is still up for debate whether the final version will allow skipping. If we had more time
we would like to include a system for skipping, that would require you to earn a skip by
winning X number of levels.

IX. The World Layout

The game takes you level by level. Each level is contained in a square, with an entrance
and an exit door to signify the beginning and end of the level. Contained in each level is a
challenge or a series of challenges to be overcome by the player in order to make it to the
exit.

X. Level Design

Levels start out incredibly easy, and build up to introduce to the player what they can do.
Each time a new mechanic is introduced, there should be a level devoted to teaching that
mechanic, perhaps integrating it with some old ones to match the difficulty rank of where
in the game the mechanic is introduced. Any other level could use any mechanic the
player is familiar with to create a challenging environment and reach the finish. We have
also included levels devoted to teaching players how to use moves, that will be used in
later levels.

As we played and designed levels we became what you might call “expert gamers” with
respect to our game. So even some of our simple levels proved to be a little challenging
for some people, and what we considered moderately hard, was kind of insane for our
play testers. Also through play testing we found that some things that we as designers
noticed and worked around, other people would continually die on. We have changed our
levels to make them more user friendly, and also to help players learn as we did. We
found that because our game is a puzzle solver primarily and a plat former secondarily it
was better to use lasers to make levels that would other wise to easy harder, though you
can also use lasers to make a difficult level even more difficult. The trick is to restrict the
player from being able to just get to the exit directly, but leave enough room for the
player to play with our momentum mechanics. Through play testing we were able to
determine what levels were more difficult than we intended, and we were able to adjust
them.

To sum up this lesson: If you think your game is too easy, make it easier. This of course
depends on who you are marketing it to, but it’s a generally good rule of thumb. In the
end, we were very proud that our game played like a true puzzle game, with most of the

puzzles forgoing the necessity of precise timing and skill, and relying on the mind to find
a simpler route to victory.

For a list of the mechanics, see Section XIII.

Here are some of the original level design sketches to get initial concepts on paper.

There are many level designs that were created in the level editor and didn’t make it
into the game; we also have many that did. But we won’t show them all here.

XI. Visualization- characters, flow charts,

Being in a space station, all objects have to seem somewhat sleek and space-like. Here
are the tile pieces how they were originally designed.

Lasers:

Other:

Crate Door Wall

By combining all these elements, a typical level would look something like this:

As can be seen in the finally game, all of those underwent changes, in particular the wall
sprite [Rory, this is your cue].

Here is the concept art for our character, and accompanying sprite versions. [Chris…]

XII. Music/ Sound Design

Music should be catchy, but not intrusive to the gameplay in any way; let the player
think. [Rory again]

Sounds were carefully selected from the corners of the internet, using free and open
resources only. We wanted spacey sounds that reflected the environment and the
character. Sounds added were sounds for: opening a gate, closing a gate, rotating the
room, landing on a laser, entering a level and landing after a rotation.

XIII. Rules and Gameplay A. Setup, B. Gameplay, C. Scoring

A. Rules

a. Start wherever the map places you, and somehow make your way to the
exit.

b. Use the mechanics at your disposal in any way you see fit to make it to the
exit. The following are all the mechanics that will appear in the game.

i. Primary: Rotate the room 90 degrees CW, CCW, or complete
180.
This is the entire purpose of the game. Every single level beyond
maybe the first couple should involve this mechanic somehow.

ii. Jumping

iii. Lasers – lasers travel along walls through nodes that contain them.
They function the same way that most games employ spikes: if you
touch a laser you will die and restart the level.

iv. Boxes - like the player, these are free objects subject to any
movement and gravity. Fling them around using the rotation just
like you would yourself. Stack them, stand on them, and most
importantly use them to activate switches. They also are immune
to lasers.

v. Switches and Gates

1. Switches act like a light switch, “attached” to the
background of the level, when an object collides with it in
the direction it is facing, they will flip, changing the status
of all associated gates. Gates are linked through an “Object
Subset” number possessed by all environmental objects, but
utilized only by gates and switches. There are two kinds of
switches; they both act the same, except that one kind only
finds one subset number gates (0, 1, 2 or 3) and the other
finds two different subsets of gates (0+1, 1+3, etc.) causing
overlap with the other gates, and some interesting puzzle
potential.

2. Gates start at the given location and extend until they
encounter a space that is not blank. When a switch activates
the gate, it opens, returning all the overridden spaces blank.
If it is activated again, it closes (extends) again, switching
its status.

vi. Mechanics that did not make the game due to time constraints.

1. Swinging Doors – these would always swing down from
their hinges, so they would block a tunnel or what-have-
you based on which way the room is rotated.

2. Laser switches – switches that turn off and on lasers.

B. Gameplay – Being able to switch the source of gravity is fun, and though playing
with momentum and gravity is fun, playtesting revealed that it is also challenging
and needed some getting used to. There were many calls to do away with it, but
we felt that would have made the game too simple and not as dynamically real, so
instead we simplified it and slowed it down.

C. Scoring – It is a thinking game, but that said there is something to be said for
doing it in a short amount of time. Each game is timed, but we were not able to
add the elapsed time into the game since it was extra and not central to gameplay.
Instead, it prints out in the DOS window after each level.

With much more extra time, other things we might have added would be stats, so
people could compete after they had already beat the game. Similar to Portal like
number of steps, number of rotations, time and deaths.

XIV. Program Structure

The Game class runs the entire game, making sure the playable area, the level editor, and
menus are only active one at a time, and painting them as necessary. It also holds
functions to run the main game, and is the main panel in which the game appears. Game
also runs the animations, so it stops everything from happening until an animation is
complete; this includes entering, exiting, dying, and rotating.

The program has been constructed with two basic kinds of objects: Environmental and
Free. Environmental objects are objects that get their own space on the grid that serves a
purpose in the environment, such as a wall, or spikes, or a switch or a gate; they are not
subject to gravity and maintain their grid position at all times. Whenever a free object
collides with a grid cell, the colliding object is sent to the grid’s object, figures out the
direction of collision, and performs whatever action is defined for that kind of object
(Walls, for instance, keep the free object on the side of the collision, not letting it through
the grid).

Free objects, on the other hand, are subject to gravity and collisions. These refer to the
Player and boxes. The program was initially designed with the intention of easily adding
more if necessary, but shortcuts were taken to make boxes work, so some rewriting
would be in order in that case, primarily in terms of saving and loading them. Free
objects should also be able to collide with each other, so that boxes can stack or players
can jump on them. There are still obvious “bugs” in terms of programming this, which
still confuse me but don’t affect gameplay enough for me to truly worry. Collision is
tough, so don’t be afraid to research ways to do it like I didn’t.

These two classes allows for creating new categories for each with relative ease, allowing
the game to evolve as more programmers get a hold of it. The grid system also allows for
a level creator, simplifying the level design process immensely.

Biggest lesson learned through programming: plan everything out. Think about
everything in the game you would need to program, and plan it out, even if you think it’ll
be easy to add. I planned out the Environmental Object class, the grid system, and how
everything is saved, so now it is very easy to add another kind of object (we considered
adding windows into space, but thought of it too late to bother adding) and is very easy to
make levels. What I did not plan out was much of what would appear on the screen,
namely animations; I also did not think through saving boxes. As a result, corners were
cut in order to get this done, and lots of methods became extraneous from moving around
variables and actions from different classes so in the end it became confusing and
inefficient to read.

I also did not fully understand the concept of static variables. If I had, it would have made
constructors much simpler for me, and I would not have had to reference everything to
everything else – just make things like the Player or Level static variables in the Game
class so they can be more easily accessed.

XV. Technical Specs: Physics, Rendering System, Lighting Models

The physics applied include gravity, momentum, and very little friction. Rendering and
Lighting is irrelevant, as are most other physics concepts. I repeat, collision is hard to get
working perfectly.

XVI. Implementation

Code generated from scratch using java and the given java library. Graphics created in
Adobe Photoshop.

XVII. Production Timeframe

Biggest Scheduling Lesson: Plan an optimistic, ambitious schedule – plan to finish long
before it’s due – and stick to it. Even if you fall behind, don’t rely on that extra time you
set aside at the end; the more you fall behind the more and more late nights you will have
as the deadline draws near. Pushing yourself early means things get done earlier, and
problems are solved earlier to make room to solve newer problems. If in fact you finish
earlier than planned, then use the extra time to either relax or polish the game to make it
look and feel extra extra shiny and amazing.

• As of March 26th…
o The Level editor has been completed from a programming standpoint.
o All mechanics are working with the exception of free-object collision.
o Several levels have been created.
o Character run animation has been created.
o Walls and lasers have been created.
o Regular Game code is not in place.
o Menu Screen graphic is in production.

• Left to do:
o Add all graphics and sound as they come.
o Complete all levels.
o Complete main-game and main menu code
o Create character-jump sprite/animation and character dying animation
o Background(s)
o Switch and Gate sprites.
o Sound – Music and effects.
o In-Game “pause” menu
o Playtest.
o Add in extras

� Door animation
� Laser-pulse animation
� Level Editor

Schedule of remaining tasks to be done by.

• April 2nd

o Add all available graphics.
o Fix free-body on free-body collision.
o Create switch and gate sprites.
o Find key sounds, and preferably some music.
o Complete Main Menu screen.
o Start Enter/Exit level animations.
o Plan all remaining levels, and difficulty arch of the game.

• April 9th
o Fix bugs.
o Add pause-menu code.
o All levels should be completed.
o Complete character jump sprite (turning it into animation is less of a

priority, and can be done later).
o Complete Enter/Exit animations
o Complete sound and music search and add to game.
o Complete background and all variations.
o Start playtesting – send to everyone we know for feedback.

• April 16th
o Fix bugs found in playtesting.
o Fine tune the levels and difficulty.
o Make Pause Menu image
o Complete Character-dying-to-lasers animation
o Catch up on anything not done. If all done, start on extras.

• April 23rd
o Fine tune the game based on playtesting (this includes walking speed,

jump height, maximum falling velocity, etc.).
o Fix all remaining bugs.
o Print all work and submit it all on a CD.

XVIII. Research

See Section II.

XIX. References

Shift – http://armorgames.com/play/751/shift
Portal – http://orange.half-life2.com/portal.html
And Yet It Moves - http://www.andyetitmoves.at/
Spin the Black Circle – http://www.bubblebox.com/play/skill/902.htm

XX. Other Lessons:

Always listen to the programmer. Of course it depends on the nature of the game, but
more likely than not the programmer knows what is possible because without the

programmer there is no game (you can have a game without pretty graphics). This is not
to demean the work of game artists out there, but is more to bring things down to a
realistic and doable level. If the programmer can’t make your game, then you don’t have
a game.
Also, more than one programmer is nice. It is a lot of work for just one person (again
depending on the game).

When choosing a game, especially at the student level, pick something that will be easy
for your programmer to program. This is similar to the previous lesson, but it is more a
warning to the programmer. Things will come up that you will not think of. Even if
everything is easy to program, it still takes time, and there are a lot of things that are
taken for granted in games that the programmer is now expected to make happen (soft
jumping for instance, and accurate and playable physics). Pick something easy to do, and
– as with the optimistic schedule – if it is finished with time remaining, it can always play
better and have more efficient code.

Playtesting is important!

Let me say that again.

Playesting is important!
Fortunately, this lesson had been pounded into us through others, and so we made sure to
implement it. As explained in Section X (Level Design), the game had been constructed
as much much harder than it appeared to us, hence the lesson “If it seems too easy, make
it easier.” Beyond difficulty, find out what players think of the game, what they like,
what they don’t, and strongly consider opinions that come up more than a couple times.
Generally, this experience and feedback was incredibly valuable to us, and we took into
account much of what was said. The hard part is getting people to say more than just “it
was fun” or “it was frustrating.”
One instance where we went slightly against the playtesters is on the issue of momentum.
Many players could not grasp the fact that if you had some speed then moved gravity to
another place that you continued to travel in the direction you had been traveling in
instead of resetting your velocity. It was suggested by many to eliminate the concept
entirely, however if that were done then the game would become incredibly easy, and
levels would have to be added requiring accurate timing in order to make it more
challenging – the game would have essentially become a puzzle-version of Pac Man.
Besides, when you weren’t dying, flying around made it more fun and feel real. The
decision was made to keep momentum, but dumb it down a lot. The falling speed was
reduced to ¾ of it’s original, the maximum side-speed was set to half that of the vertical
(so that when the room was “rotated” the player wasn’t sent shooting sideways, but just
enough to make it challenging and feel real), and the mid-air controls were given more
sensitivity so it became easier to control. After this was done the game became much less
frustrating while keeping the same feel.
For future reference, if the game were to be remade, a consideration should be actually
changing the source of gravity instead of rotating the room. That way momentum feels

more fluid and in place, although you lose the cool affect of rotating the room and it
would be harder to control your character.

