lan Keyworth (keywoi@rpi.edu)
Ray Coulter (coultr@rpi.edu)
Rory Perner (perner@rpi.edu)
Chris Mui (muic@rpi.edu)

Game Design Document fdlova Radix

I. Artist Statement/Philosophy/The WHY Factor (why create this game? why would
someone want to play it?)

There are several reasons people would Ntaya Radix. For one, people like simple
games they can pick up as a distraction from homevemd this is easily one of those
games — so long as the opening levels teach teatesdsskills well enough. People also
generally enjoy physics. While this is not the nasysics intensive or accurate game,
mastering and manipulating momentum and gravityareThe mechanic is also
interesting, and while not entirely new, this exemuopens many design paths and
offers a challenging and fun break from reality.

I. Predecessor or previous games/ distinctive factorsin thisgenre

The game was most inspired 8yift, a flash game developed by Armor Game$hirft
game, you were given the power to inverse the féoal background (so one became the
other) and the level turned on its head. Mechaancklevel designs are partially inspired
by Portal, by Valve, which has pushed the realm puzzle-gantesa new dimension.

During our development proceshift 2 was released. One of the new mechanics
introduced was to rotate the room. Fortunatelyufthis was only done at specific
squares and in specific directions, so despitdatiethat the square room rotated and
gravity changed — like in our game — our conceptai@eed mostly safe.

There have been rotation games done in the past,asu“Spin the Black Circle,”
developed by BubbleBox.com, where you have fregtianal control of the maze — to
any degree, mind you, so more precise thamNtha Radix — to move a ball to the exit
through gravity while avoiding spikes and othertabkes.Nova Radix is different from
this mainly in the sense that the player has taiatrol over themselves, whereas in
Black Circle it can get incredibly frustrating whgou don’t spin the room just right for
the ball to avoid destruction, despite having aemoteresting physics engine.

And Yet It Moves, an independent game sponsored by ImpulsProgratsmrotates the
world map 90 degrees to solve puzzles. The differdrere is that the game plays much
like the typical scrolling platformer, where thepér only sees a small portion of the
map at any given point; you are also able to diéabing too far or for too long. Nova
Radix is a more direct puzzle game in the sengdehlaentire world is viewable at once,
so the player can plan the whole route to victoitheut pushing a button. The puzzle
oriented goal oNova Radix also means that dying from falling would be mortesfrating

since it is not as foreseeable, and the focus dhmeibn avoiding the clearly marked
hazards instead of the potential perceptions. Tai@ goal is to finish the puzzle, not to
“not die”.

[I1. Target Audience

Anyone who likes games that are easy to pick umentally challenging and creative.
Although this could theoretically apply to any dmgyond the point at which children are
capable of understanding spatial orientation aadityr, the game is more focused
towards a teenage sort of audience. The most evidsult of this is the character, since
the concept art portrayed a more intense yet lappearance, reflective of teenagers.
The gameplay itself, however, has a much broadhgyeraince it twists the physical
concept of gravity that we all fundamentally undi@nsl, and in that sense we hope as
many people as possible can enjoy the game.

V. Introduction & Story

Though there is no defined story, the game takasepbn some sort of space station. The
closest correlation to a story arch is introductidmechanics and innovative uses of
those build a difficulty curve and fun experienkbeough the course of the game.

V. Immediate and long term projected socio/cultural project impact

The immediate impact is that people have yet amathiek online game to play around
with. In the long term it will hopefully help bringuzzle games back to the forefront of
peoples’ minds instead of FPS games or the like.

V1. Delivery System & Requirements
Have Java Runtime Environment enabled.
VII. Interface

On the screen is nothing but the level and your @ontrols are introduced through the
opening levels using special backgrounds with utstons. Keyboard keys control the
character and the abilities.

The Level Editor interface will shrink the levelargh to fit tiles and options at the
bottom and side of the screen. Click on a tilegiec the type you would like to place,
then click on the corresponding grid, using the santation keys to rotate the piece that
are used to rotate the room in-game. Save, Loast,arel Exit options appear at the
bottom. It should be noted that while the leveladis mostly functional for our own

level design purposes, it is extra in terms ofgame itself, and was not able to be added
for the symposium section.

VIIIl. User Interaction

Arrow keys control the character, Spacebar jumpd,A8 S, and D rotate the room
counterclockwise, 180, and clockwise respectivielgelps to think that the left-hand
letter (‘A’) makes the left side of the room rotatewn, and the right-hand letter (‘D’)
rotates the right side downward. In the Level Editoe mouse is used for selecting and
placing objects, and A, S, D are used to rotatetjects. Other controls that have been
added are M to toggle the music on and off, R resthe level, and K skips the level. It
is still up for debate whether the final versiorlailow skipping. If we had more time
we would like to include a system for skipping,ttiv@uld require you to earn a skip by
winning X number of levels.

IX. TheWorld Layout

The game takes you level by level. Each level ig@ioed in a square, with an entrance
and an exit door to signify the beginning and ehtthe level. Contained in each level is a
challenge or a series of challenges to be overdpnibe player in order to make it to the
exit.

X. Level Design

Levels start out incredibly easy, and build upnimdduce to the player what they can do.
Each time a new mechanic is introduced, there shiogila level devoted to teaching that
mechanic, perhaps integrating it with some old doasatch the difficulty rank of where
in the game the mechanic is introduced. Any oléngl could use any mechanic the
player is familiar with to create a challenging eamment and reach the finish. We have
also included levels devoted to teaching players toouse moves, that will be used in
later levels.

As we played and designed levels we became whatmyglt call “expert gamers” with
respect to our game. So even some of our simpédgroved to be a little challenging
for some people, and what we considered moderhasely, was kind of insane for our
play testers. Also through play testing we fourat gome things that we as designers
noticed and worked around, other people would coially die on. We have changed our
levels to make them more user friendly, and aldoelp players learn as we did. We
found that because our game is a puzzle solverpityrand a plat former secondarily it
was better to use lasers to make levels that wathlelr wise to easy harder, though you
can also use lasers to make a difficult level ewemne difficult. The trick is to restrict the
player from being able to just get to the exit dikg but leave enough room for the
player to play with our momentum mechanics. Thropigly testing we were able to
determine what levels were more difficult than weended, and we were able to adjust
them.

To sum up this lesson: If you think your game i ¢asy, make it easier. This of course
depends on who you are marketing it to, but itgeaerally good rule of thumb. In the
end, we were very proud that our game played like@puzzle game, with most of the

puzzles forgoing the necessity of precise timingd skill, and relying on the mind to find
a simpler route to victory.

For a list of the mechanics, see Section XIII.

Here are some of the original level design sketth@g®t initial concepts on paper.

There are many level designs that were creatdtkitevel editor and didn’t make it
into the game; we also have many that did. But wa'ixsshow them all here.

Xl1. Visualization- characters, flow charts,

Being in a space station, all objects have to ssmmewhat sleek and space-like. Here
are the tile pieces how they were originally des@n

Other:
Crate . Door . Wall -

By combining all these elements, a typical leveulddook something like this:

Lasers:

As can be seen in the finally game, all of thosgemwent changes, in particular the wall
sprite [Rory, this is your cue].

Here is the concept art for our character, andrapemying sprite versions. [Chris...]

48 px

X11. Music/ Sound Design

Music should be catchy, but not intrusive to thengplay in any way; let the player
think. [Rory again]

Sounds were carefully selected from the corneth@internet, using free and open
resources only. We wanted spacey sounds that tedli¢éice environment and the
character. Sounds added were sounds for: opergateaclosing a gate, rotating the
room, landing on a laser, entering a level andifapdyfter a rotation.

XII1. Rulesand Gameplay A. Setup, B. Gameplay, C. Scoring

A. Rules

a. Start wherever the map places you, and somehow gmakewvay to the
exit.

b. Use the mechanics at your disposal in any way geuisto make it to the
exit. The following are all the mechanics that vaitipear in the game.

i. Primary: Rotate the room 90 degrees CW, CCW, or complete
180.
This is the entire purpose of the game. Every sitaylel beyond
maybe the first couple should involve this mechaoimehow.

ii. Jumping

lii. Lasers — lasers travel along walls through nodaisdbntain them.
They function the same way that most games emglixgs: if you
touch a laser you will die and restart the level.

iv. Boxes - like the player, these are free objectgestibo any
movement and gravity. Fling them around using thation just
like you would yourself. Stack them, stand on thang most
importantly use them to activate switches. Theg al® immune
to lasers.

v. Switches and Gates

1. Switches act like a light switch, “attached” to the
background of the level, when an object collidethwtiin
the direction it is facing, they will flip, changirthe status
of all associated gates. Gates are linked throadiOaject
Subset” number possessed by all environmental thjleat
utilized only by gates and switches. There arekinds of
switches; they both act the same, except that ovkedaly
finds one subset number gates (0, 1, 2 or 3) andttiner
finds two different subsets of gates (0+1, 1+3,)atausing
overlap with the other gates, and some interegtunzle
potential.

2. Gates start at the given location and extend thmy
encounter a space that is not blank. When a swaittiiates
the gate, it opens, returning all the overriddesceg blank.
If it is activated again, it closes (extends) agawmitching
its status.

vi. Mechanics that did not make the game due to timstcaints.

1. Swinging Doors — these would always swing down from
their hinges, so they would block a tunnel or wihate-
you based on which way the room is rotated.

2. Laser switches — switches that turn off and onrfase

B. Gameplay — Being able to switch the source of gyasifun, and though playing
with momentum and gravity is fun, playtesting rdedahat it is also challenging
and needed some getting used to. There were m#lsyado away with it, but
we felt that would have made the game too simpterent as dynamically real, so
instead we simplified it and slowed it down.

C. Scoring — It is a thinking game, but that said ¢hisrsomething to be said for
doing it in a short amount of time. Each gamenset, but we were not able to
add the elapsed time into the game since it waa exid not central to gameplay.
Instead, it prints out in the DOS window after eémlel.

With much more extra time, other things we mightéhadded would be stats, so
people could compete after they had already beagdime. Similar to Portal like
number of steps, number of rotations, time andrdeat

XIV. Program Structure

The Game class runs the entire game, making senglalyable area, the level editor, and
menus are only active one at a time, and paintiegitas necessary. It also holds
functions to run the main game, and is the mairepanwhich the game appears. Game
also runs the animations, so it stops everythiagnfhappening until an animation is
complete; this includes entering, exiting, dyingd aotating.

The program has been constructed with two basuskai objects: Environmental and
Free. Environmental objects are objects that gat twn space on the grid that serves a
purpose in the environment, such as a wall, orespikr a switch or a gate; they are not
subject to gravity and maintain their grid positatrall times. Whenever a free object
collides with a grid cell, the colliding objectsgnt to the grid’s object, figures out the
direction of collision, and performs whatever actis defined for that kind of object
(Walls, for instance, keep the free object on e sf the collision, not letting it through
the grid).

Free objects, on the other hand, are subject tatgrand collisions. These refer to the
Player and boxes. The program was initially degignih the intention of easily adding
more if necessary, but shortcuts were taken to rhakes work, so some rewriting
would be in order in that case, primarily in terofisaving and loading them. Free
objects should also be able to collide with ea¢tegtso that boxes can stack or players
can jump on them. There are still obvious “bugstemms of programming this, which
still confuse me but don’t affect gameplay enoughnhe to truly worry. Collision is
tough, so don’t be afraid to research ways to dikeat! didn’t.

These two classes allows for creating new categdoieeach with relative ease, allowing
the game to evolve as more programmers get a laidTde grid system also allows for
a level creator, simplifying the level design pres@nmensely.

Biggest lesson learned through programming: plamyking out. Think about

everything in the game you would need to program, @an it out, even if you think it’ll
be easy to add. | planned out the Environmentaé@lgjlass, the grid system, and how
everything is saved, so now it is very easy to adother kind of object (we considered
adding windows into space, but thought of it tae @ bother adding) and is very easy to
make levels. What I did not plan out was much oatwould appear on the screen,
namely animations; | also did not think throughisg\woxes. As a result, corners were
cut in order to get this done, and lots of metheelsame extraneous from moving around
variables and actions from different classes gberend it became confusing and
inefficient to read.

| also did not fully understand the concept ofistaariables. If | had, it would have made
constructors much simpler for me, and | would rentéenhad to reference everything to
everything else — just make things like the Playdrevel static variables in the Game
class so they can be more easily accessed.

XV. Technical Specs: Physics, Rendering System, Lighting Models

The physics applied include gravity, momentum, @&y little friction. Rendering and
Lighting is irrelevant, as are most other physiesaepts. | repeat, collision is hard to get
working perfectly.

XVI. Implementation

Code generated from scratch using java and thengaxe library. Graphics created in
Adobe Photoshop.

XVII. Production Timeframe

Biggest Scheduling Lesson: Plan an optimistic, éiois schedule — plan to finish long
before it's due — and stick to it. Even if you fa#hind, don’t rely on that extra time you
set aside at the end; the more you fall behindrtbee and more late nights you will have
as the deadline draws near. Pushing yourself eabns things get done earlier, and
problems are solved earlier to make room to soéween problems. If in fact you finish
earlier than planned, then use the extra timetkeerelax or polish the game to make it
look and feel extra extra shiny and amazing.

« As of March 26§'...
0 The Level editor has been completed from a progriagistandpoint.

All mechanics are working with the exception ofefr@bject collision.
Several levels have been created.
Character run animation has been created.
Walls and lasers have been created.
Regular Game code is not in place.
Menu Screen graphic is in production.
* Leftto do:
Add all graphics and sound as they come.
Complete all levels.
Complete main-game and main menu code
Create character-jump sprite/animation and charagiag animation
Background(s)
Switch and Gate sprites.
Sound — Music and effects.
In-Game “pause” menu
Playtest.
Add in extras

= Door animation

= Laser-pulse animation

= Level Editor

O 0O O0OO0OO0Oo

O 0000000 O0O0o

Schedule of remaining tasks to be done by.
« April 2™

0 Add all available graphics.
o Fix free-body on free-body collision.
o Create switch and gate sprites.
o Find key sounds, and preferably some music.
o Complete Main Menu screen.
o Start Enter/Exit level animations.
Plan all remaining levels, and difficulty arch betgame.
« April 9™
Fix bugs.
Add pause-menu code.
All levels should be completed.
Complete character jump sprite (turning it intoraation is less of a
priority, and can be done later).
o Complete Enter/Exit animations
o Complete sound and music search and add to game.
o Complete background and all variations.
Start playtesting — send to everyone we know fedback.
« April 16"
0 Fix bugs found in playtesting.
o Fine tune the levels and difficulty.
o0 Make Pause Menu image
o Complete Character-dying-to-lasers animation
o Catch up on anything not done. If all done, staregtras.
« April 23
o Fine tune the game based on playtesting (this dedwvalking speed,
jump height, maximum falling velocity, etc.).
o Fix all remaining bugs.
o Print all work and submit it all on a CD.

o (@)

o oo

o

XVIII. Research

See Section II.

XI1X. References

Shift — http://armorgames.com/play/751/shift

Portal — http://orange.half-life2.com/portal.html

And Yet It Moves - http://www.andyetitmoves.at/

Spin the Black Circle — http://www.bubblebox.conafpkkill/902.htm
XX. Other Lessons:

Always listen to the programmer. Of course it dejseon the nature of the game, but
more likely than not the programmer knows whatasgible because without the

programmer there is no game (you can have a gathewvipretty graphics). This is not
to demean the work of game artists out there,sutare to bring things down to a
realistic and doable level. If the programmer caméke your game, then you don’t have
a game.

Also, more than one programmer is nice. It is afawvork for just one person (again
depending on the game).

When choosing a game, especially at the studeal, Ipick something that will be easy
for your programmer to program. This is similathe previous lesson, but it is more a
warning to the programmer. Things will come up @i will not think of. Even if
everything is easy to program, it still takes tiraed there are a lot of things that are
taken for granted in games that the programmeous expected to make happen (soft
jumping for instance, and accurate and playablesigky. Pick something easy to do, and
— as with the optimistic schedule — if it is finexzhwith time remaining, it can always play
better and have more efficient code.

Playtesting is important!
Let me say that again.

Playesting is important!

Fortunately, this lesson had been pounded intbrasiggh others, and so we made sure to
implement it. As explained in Section X (Level DOy, the game had been constructed
as much much harder than it appeared to us, haededson “If it seems too easy, make
it easier.” Beyond difficulty, find out what playethink of the game, what they like,

what they don’t, and strongly consider opiniond tteane up more than a couple times.
Generally, this experience and feedback was inbhggialuable to us, and we took into
account much of what was said. The hard part nggpeople to say more than just “it
was fun” or “it was frustrating.”

One instance where we went slightly against thgtesters is on the issue of momentum.
Many players could not grasp the fact that if yaa some speed then moved gravity to
another place that you continued to travel in tinection you had been traveling in
instead of resetting your velocity. It was suggedtg many to eliminate the concept
entirely, however if that were done then the gameald/become incredibly easy, and
levels would have to be added requiring accurateng in order to make it more
challenging — the game would have essentially becapuzzle-version of Pac Man.
Besides, when you weren’t dying, flying around maaweore fun and feel real. The
decision was made to keep momentum, but dumb ihdolet. The falling speed was
reduced to % of it’s original, the maximum side-egp&vas set to half that of the vertical
(so that when the room was “rotated” the playernitasentshooting sideways, but just
enough to make it challenging and feel real), d&edmid-air controls were given more
sensitivity so it became easier to control. Aftes tvas done the game became much less
frustrating while keeping the same feel.

For future reference, if the game were to be remadensideration should be actually
changing the source of gravity instead of rotatiggroom. That way momentum feels

more fluid and in place, although you lose the @itdct of rotating the room and it
would be harder to control your character.

