
1

Synergy
 ©Blue Screen of Death

L e a d D e s i g n e r
A n d r e w ‘ Z i f ’ H o r t o n

L e a d P r o g r a m m e r & A s s i s t a n t D e s i g n e r

B r i a n R a t t a

T o o l P r o g r a m m e r
A n d r e w ‘ Z i f ’ H o r t o n

2 d / 3 d A r t & A n i m a t i o n
M a t t h e w G i a c o m a z z o

U I A r t i s t & A d d i t i o n a l A n i m a t i o n

A n d r e w ‘ Z i f ’ H o r t o n

A u d i o F X & O r i g i n a l M u s i c
M a t t h e w G i a c o m a z z o

V o i c e T a l e n t
S e r a G a l v i n

2

I. Artist Statement / Philosophy / The WHY Factor (why create this game?
why would someone want to play it?)

 This game is truly an experiment in cooperative gaming, through this game we hope to
demonstrate that it is possible for people to work together in a non split screen environment, and
that it is possible to have a great time even when in a supporting role. People will enjoy playing
this game for a variety of reasons, but it’s greatest thrill could be counting on someone else, and
not knowing for sure what will happen because you are trusting someone else to a part of the task
instead of doing it all yourself.

3

II. Predecessor or previous games/ distinctive factors in this genre

 There are several games that have incorporated some of our ides for this project. Just
as our game title implies multiple people working together we have combined ideas from other
games and our own to create something new.

Game Feature Description Difference
Ikaruga Ikaruga is a traditional bottom up

scrolling space shooter game with one
twist absorbing and firing black and
white weapons. This feature is very
similar to our implementation of the color
system in red, blue, green, and yellow.
Absorbing a color allows the user to
release a special attack which is the same
for both colors.

In our game the different colors also
cause the attacks of the character to
be inherently different, the play is
done in solid areas instead of a
scrolling interface, and attacks do
not mean certain death but rather
damage. We also have special
attacks charged by absorbing attacks
but each special for the each color
will have a different effect.

DDR (Dance
Dance
Revolution)

This is a game in which players must
quickly press arrows in sync with music.
It requires excellent timing and has a
unique skill set that develops of eye-foot
coordination. In our project we are using
the same arrow layout and skills in
quickly reading arrows and performing
that task with ones feet will be essential.
Also the rush of physical activity is very
important in this game, as it will be in
ours as well.

Our game may use arrows, but they
are for the most part not laid out the
same way every time as in DDR.
Also timing is less important than
speed and accuracy. The timing in
our game is not an arrow lining up
but rather reactions to the gameplay
and required color changes.

4

III. Target Audience

 Our primary audience is more or less the social gamer. As this is a cooperative game
people who like to play alone or compete alone would probably not enjoy the game. As there is
a slight consideration of people having a game pad available our main audience will most likely
include people who already have a pad because of another game which uses it. However if word
of mouth gets around that the game is fun on it’s own merits this would no longer be as much of
an issue. In a more far thinking sense if a game of this sort were successful we could even sell
our own custom pads got better control schemes and graphics to go with the theme. A secondary
audience for this game could be those interested in a fun way to exercise. Due to the fast paced
feet motion of the game it is excellent at creating full body aerobic exercise.

IV. Introduction & Story

 The game is not really story driven so much as action driven. The introduction will be
more an introduction to the rules of the game and how to play. Eventually we may create a
“Story Mode” which fleshes out the character of our sorceress and her familiar but currently we
are focusing on the game play itself. This could include the character and monsters changing
over time as well as an inventory and puzzle system.

V. Immediate and long term projected socio/cultural project impact

 Games have become in many cases almost an anti-social activity. We hope our game
will greatly encourage direct interaction and relationships with other people through the game’s
unique interface. In the long run this kind of close interaction could stand to encourage the
players to work together more fluidly and quickly. Also it may encourage the delegation and
assembly of separate tasks to accomplish a greater goal, a lesson that must be learned in order to
be successful in the game. Finally this could forward the idea of games that are actually healthy
to play, a win-win situation for everyone.

VI. Delivery System & Requirements

 To package our program we are using Inno Installer. This is a free installer that is easy
to use and looks very professional. Delivery can be done in two ways. One as a burned CD with
our setup and install program. Second is a website where people can download our program. The
requirements to run our game will include the OpenGL and glut DLLs. Our game provides these
on Install.

5

VII. Interface

Type Implementation
Primary
movement

W,A,S,D keys control strafing of the character

Turning The character points in the direction of the cursor, but always floats as per the
primary movement (S is always straight down and so on)

Fire Primary
Weapon

Left mouse click fires currently selected weapon (the current player color)

Fire Special
Weapon

Ctrl-clicking causes a stored special attack to be fired, these attacks are fired in
the order they were charged.

Target
Weapon

Weapon will fire directly at wherever the cursor is pointing

Change
active color

Hitting corner arrows in a jump (up, left; up, right; down, left; down right) will
change the active color

Charge
special
attack

When in Charge mode, the first arrow a player hits will determine what attack
will be charged (as indicated by the first block that shows up) immediately upon
hitting that arrow the remaining arrows move towards the top of the screen
disappearing when hit on the pad. Upon completing each segment one charge is
added. Magic power drains over time and the mode will automatically quit if
there is no more remaining.

Activate
Special
Attack

Right clicking activates special attack mode which drains magical power over
time to be in.

Change
Combat
Mode

Jumping on the left and right arrows at the same time then a direction changes the
battle mode of the player. These modes are Increased Speed, Damage, and
Defense.

Quick dodge Tapping an arrow twice in the same direction quickly causes the character to
teleport in that direction in order to dodge attacks.

Enter Portal Hitting Enter while over a portal takes you to another area.

6

VIII. User Interaction

Key/Mouse Player-> Game events
 The Key/Mouse player will be constantly interacting with the various enemies and
attacks on the screen. Commonly both dodging and firing, even running into same color attacks
to increase magic charge.

Pad Player -> Game events
 The pad player must keep changing the current active color to what is most applicable
to the situation at hand, including absorbing a particular color or using a color’s attack. Also
they must perform arrow combinations displayed for charging special attacks, Dodge attacks
with the speed dodge feature, or change the combat mode when appropriate.

From left, Brian Ratta, Andrew "Zif" Horton, and Matthew Giacomazzo

Photo Credit: Luanne M. Fe rris – Times Union

Player->Player
 The Key/Mouse player and the Pad player will interact with each other. This could take
the form of direct communication, the pad player saying “red” to turn red for example, automatic
communication, the pad player changing the color on their own to one more convenient and the
main player responding to this for example. And finally synergistic interaction wherein the
players having gotten used to what the other will do respond to things exactly when they need to
happen. The main player also activates and deactivates charge mode while the pad player
chooses what color special to charge and how fast they are charged. This is one of the most
interesting and challenging features of the game, allowing experienced teams to ga in an edge by
knowing one another well.

7

IX. The World Layout

 The world setting is high fantasy. Expect to see plenty of trees, grass walkways, stone
paths and walls, and interesting decorations scattered throughout. Monsters and color towers dot
the landscape challenging players who enter.

X. Level Design

 Currently levels are created using ASCII tile maps which are created using the synergy
Map Editor. Monsters walls and other objects can also be added easily using this editor. As the
game develops so will the level designs, currently they consist of some number of areas
connected by portals which are activated by pressing enter. By traversing these portals players
enter new areas with monsters which respawn each time. Eventually these will be replaced with
more complex areas including features such as shops, items, bosses, and full level switches.

XI. Visualization- characters, flow charts,

Characters

1. A sorceress rendered first in poser
then taken down to sprites, fitting
within a 128 pixel tall area (leaving
room for the familiar as well)

2. A familiar, fairylike that flies around
the main character leaving a streak of
the currently active color, a ring
rendered in Maya then influenced to
give a perception of rotation.

3. Slimes, The base enemy of the game.
Slimes come in all 4 colors and cycle
between 3 different AI’s. They can
either hold their ground, charge, or
fire off attacks.

4. Fire Monsters, very aggressive but
short lived fireballs that seek out the
player

5. Wind Monsters, a dangerous quick
moving tornado

8

HUD

1. The health bar is the half circle along the bottom of the HUD ring
2. Magic level is represented in the center of the HUD by the concentric circle gauge.
3. Colored spheres along the top of the HUD represent the charged special attacks.
4. The right side features arrows when in charge mode that must be entered to charge up.

Enemies
 There are two kinds of enemies presently, the first kind we call crystals, which are
featured in the corners of the screenshot above. Every 8 seconds they fire out a large volume of
predictable attacks in a quarter circle pattern. Hitting them with an attack causes this timer to
reset.

 The Second kind of enemy is more dynamic; currently in the game as only white
circles they will soon have an animation and an AI that will allow them to attack the player. A
level will end when all of this kind of enemy has been defeated.

9

XII: Music/Sound Design

Sound Effect Production and Format Specs:
 Sound effects will be produced and mixed from original recorded sources and free
royalty-free sound libraries. The final mastered sound effects will be converted down to at most
8bit 22,050hz sound samples in the standard WAV format. The reason for the slightly lower
sound quality, about equal to radio, is that this is common practice to save space and put less
strain on the game.

Music Production and Format Specs:
 Original music will be produced through a variety of hardware and software applications
eventually leading to a final mix-down in Cakewalk Pro Studio 9 and mastering in Sound Forge
to a final 16bit 44.1khz WAV format file of CD quality. This will then be converted down to
160kbps MP3s to save space. The music will be original and written fresh for this game to help
add to the mood and enhance game play.

Audio Theme/Mood Objective:
 The theme of the game is high fantasy so the audio will be made to match that. Music
will be big, bold, epic much like a movie soundtrack with use of multiple instrument sounds
including drums, strings, horns and flute. Sound effects will be made to best match the actions be
seen. Repetitious actions will have multiple sound variations as well. The large special attacks
and character damage will also made using recorded voice talent.

Music List:

Song File Name Length
Main Gameplay Music Matthew Giacomazzo - Synergy - Heart of the Adventurer.mp3 ~4-6 minutes
Long gameplay track and main theme of the game.
Powerup Gameplay Music Matthew Giacomazzo - Synergy - Rising Promise.mp3 ~45 seconds
A more upbeat tension-building verse.
Opening Theme Matthew Giacomazzo - Synergy - Opening.mp3 short
A short opening for the title screen.
You Lose Music Matthew Giacomazzo - Synergy - Death.mp3 short
Sad mournful music.
You Win Music Matthew Giacomazzo - Synergy - Level Complete.mp3 short
A short fanfare and recognition of accomplishment.

Sound Effect List:

Use imp-lightning.wav for the impact sounds of each of the projectiles of the
lightning special.

Use the imp-fire.wav for the fire orb's melee attack

absorb.wav - absorbing of attack
att-earth01.wav - 3 versions of earth attack launch
att-earth02.wav
att-earth03.wav
att-fire01.wav - 3 versions of fire attack launch
att-fire02.wav

10

att-fire03.wav
att-lightning01.wav - 3 versions of lightning attack launch
att-lightning02.wav
att-lightning03.wav
att-slime01.wav - 3 versions of slime attack launch
att-slime02.wav
att-slime03.wav
att-superearth.wav - Earth special attack
att-superfire.wav - Fire special attack
att-superlightning.wav - Lightning special attack
att-superlwater.wav - Water special attack
att-water01.wav - 3 versions of water attack launch
att-water02.wav
att-water03.wav
cancel.wav - cancel button
chardeath1.wav - 3 versions of character death
chardeath2.wav
chardeath3.wav
charhit1.wav - 4 versions of character taking damage
charhit2.wav
charhit3.wav
charhit4.wav
imp-earth.wav - earth attack impact
imp-fire.wav - fire attack impact
imp-lightning.wav - lightning attack impact
imp-slime01.wav - 3 versions of slime attack impacts
imp-slime02.wav
imp-slime03.wav
imp-superearth.wav - earth special impact
imp-superfire.wav - fire special impact
imp-superwater.wav - water special impact
imp-water.wav - water attack impact
imp-windbuff.wav - wind monster melee
ok.wav - ok button
ting.wav - attack no effect

h

11

XIII. Rules and Gameplay A. Setup, B. Gameplay, C. Scoring

The Basic Rules

1. A player if hit by the active color absorbs magic energy equivalent to the power of that
attack

2. A player hit by any other color takes normal damage
3. A monster hit by its own color takes no damage; special effects like freezing still occur.
4. A monster hit by the opposite color takes double damage.
5. Special attacks are performed by activating a special attack mode; every second in this

mode drains a portion of your magical energy bar.
6. The pad player may charge any number of special attacks before they have to leave

special attack charging mode.
7. During spell charging time it is not possible to switch colors, change attack modes, or

speed dodge.
8. Special attacks must be fired in the same order they were charged, this is represented by a

gauge in the lower left corner.
9. Crystal attack squares will send out an arc of attacks across the screen, shooting one of

these will reset its counter before it fires.

Gameplay

 Gameplay will be achieved through the application of the above rules. For some
examples let us refer to the player using keyboard and mouse as A, and the player on the pad as
B. A will constantly be dodging attacks that are not the current color and trying to absorb attacks
that are of the color. Mean while player B will be trying to make this task more possible by
switching to colors that have to be passed through.

Scoring (When Implemented)

Score Increase Events

• Enemy Destroyed
• Enemy Destroyed with opposite color (more points)
• Enemy Destroyed with same color (less points)
• Attack absorbed (small amount of points)
• Level Cleared quickly (point scale based on time to clear)
• Total enemies destroyed (point scale based on amount cleared in level)
• Multiple Enemies Destroyed (bonus points for killing more than one enemy in an attack,

also keeps track of how many the most was for end bonus)
• Lives remaining (bonus points for not using all lives to get to the end)

Score Decrease Events
• Used a continue, remove all points

12

XIV. Program Structure

 We have created a hierarchical structure starting from a top level class for our game.
The main class at the top handles most of the gameplay including detecting collision and keeping
track of the other objects. A level down there is an object class that all other objects will inherit
from. Everything in the program will follow this same set of rules to make adding new objects a
simple task requiring little re-coding. Other specific classes have been added to handle unique
elements of gameplay such as the special attack charging interface.

XV. Technical Specs: Physics, Rendering System, Lighting Models

Rendering- All rendering will be done using a SDL interface. We will be pre-rendering sprites
into bitmaps for the game to display. These will be created through a combined use of
Photoshop, Maya, Poser, and Bryce.

Physics-We are using a simple 2D movement engine which takes into account velocity and
acceleration. This will be demonstrated through monsters and the character colliding and
bouncing off walls and each other knock back attacks, and the sliding movement of the main
character.

Lighting- We aim for consistency in how the scene is lit by placing our light sources in the
same place in the various rendering applications we are using, we have decided to place the light
about 45 degrees up and to the left.

XVI. Implementation

 While this concept could work in either a 2d or 3d interface in the interests of time we
have decided to go with a 2d interface. We feel that this will not detract from the gameplay as it
will not harm the cooperative aspect of the game. By designing the game to have more controls
than one person can handle easily we hope to encourage a new level of cooperative gameplay.
The pad system is also another way we are differentiating the two tasks to tie together this
synergistic effect.

13

XVII. Production Timeframe/Version History
Version .1(finished)

• Small tile set created
• Open GL and glut implementation
• Bitmap support
• Basic Physics engine
• Main music track
• Stationary Enemies
• Basic Gameplay mechanics (color switching/weapon firing)

Version .2(finished)
• Improved tile set with non feature and feature tiles in many versions
• 2 kinds of road tile for each piece
• Improved Opening Music track
• Intro and spell charging music
• Full set of sound effects inc luding alternate versions
• Full set of splash screens
• All new weapon animations
• Game start Menu
• Conversion to SDL image manager
• Transparent images implemented
• Art updated to include transparency, walls fully redone, trees no longer backed by grass
• Monsters with varying AI capability
• Lua scripting language implemented for level management
• Added configuration options for objects through lua scripting
• Full function map editor created
• Portals now link levels together
• Speed dodge feature
• Mode change feature
• HUD updated to include new features
• Fully playable as a game

Version .3 (in progress)
• Dialogue system with script interface
• Full shop system
• Items implemented
• Quick spells implemented
• Built in Joystick capability
• Various new tiles/monsters
• Boss creatures
• Discrete levels/quests
• Scoring/leveling
• Scripting system fully implemented
• Required map editor updates for new version
• Shot charge attacks

14

XVIII. Research

We looked into various game that have had cooperative gameplay and found that nearly all of
them required that both players do the same function just through some kind of split screen
function. Other examples of cooperative gameplay involve crafting on MMORPGs, or games
where you control two separate vehicles or characters who sometimes work together. The
closest style of gameplay I found was in a game called wakeboarding unleashed where one
character could control a boat while the other skied behind it. Still our conclusion was that in
general games do not require that players work directly together to influence just one character
on the screen.

A second avenue of research is also now underway involving the physical qualities of an active
game such as ours. Through research we hope to be able to maximize this quality while also
maintaining interest in the game by players. Past game examples have shown that these qualities
are by no means mutually exclusive and may make our game even more fun to play.

XIX. References

Open GL game programming, Kevin Hawkins, Dave Astle, Primatec
Open GL Programming Guide (red book)
A list of playstation 2 games with cooperative elements
 http://charon.sfsu.edu/corey/ps2coop/
A review of the best CO-op games on the market for ps2.
 http://ps2.ign.com/articles/427/427229p6.html

XX. Appendix

Synergy Map Editor Specifications

Goal:
 The goal of this part of the project was to make a program that would make creating the
map and script files for the game much easier. This involves creating a simple visual system that
allows for the conversion from a visual representation of a map to the files of the map itself.

Definitions:

• Tile: An image from a tileset that when gridded out over a screen can create a full
room/level. In the case of this game they are 64x64 pixels in size.

• Tileset: A set of tiles arranged in some number of rows and columns. Our tileset
includes grass stone roads and walls.

• Object: like a tile but intended to be either animated or standalone. These are used for
things such as level exits, creatures, and other such features.

• Canvas: The structure the map image is created in.
• Layer: The game requires that images stack in the right order, for our game that places

them in this priority-> grass/stone/roads|walls|objects.

15

Required Features and Implementations:
1. Ability to begin from a random field of grass/stone

Purpose: Grass is the base tile of the game, also the location of a particular tile of grass
has no real use. Thus the requirement is in making the 12 tiles of grass create a field that
does not look like it repeats. By having made 6 tiles without obvious features and 6 with
them this is accomplished.
Implementation: The code uses a random ticket system with 10 to 1 odds favoring the
feature free tiles. These tiles are then placed in an array and displayed on the canvas. If
stone is also selected or stone alone, it is simply added to the ticket selection.

2. Ability to place grass and stone individually with brushes.
Purpose: Tiles especially stone need to be placed in particular slots, but still do not need
to be selected indivually as to what piece of stone.
Implementation: A bind callback detects left clicks on the canvas and executes the brush
selected in the brush menu. It randomly selects a tile in that set then edits the grass array
and updates the canvas image.

3. Place road individually and automatically select the correct road piece.
Purpose: placing road tiles is tedious if done individually, automating it based on what
tiles around the tile are also road tiles is a big help.
Implementation: When you left click and the road brush is on the following events occur.

a. The x/y tile is calculated
b. The neighboring roads are calculated and stored using a binary notation. (one

adds 8, one 4, one 2, and one 1).
c. The result of this notation is the array value of the tile that should be placed there.
d. The appropriate road is added to the canvas.
e. Using binary compares the road allocation algorithm is run on any neighboring

roads, making them match up to the new road. This is also executed when a road
is removed.

4. Place walls with automatic correction as of roads, however on a new layer
Purpose: walls have transparent areas so that they can be placed on top of other tiles and
still have the background show through.
Implementation: They are calculated using a similar function to the roads. Since the full
array of tiles is created before the roads then updated walls will always be on top of tiles
as desired.

5. Create Objects
Purpose: To make creating and locating monsters, crystals, trees, and the player start
location easy.
Implementation: Objects being placed individually after the tiles and walls will always
be on top of them. They are stored in growing arrays as they are made and popped onto
the screen. These are located by the top left corner (because that is how the game itself
locates them.

6. Open Map files
Purpose: Being able to open and edit files you have already created
Implementation: Made very simple because of the implementation of the random tiles
one normally starts off. A very similar function is called that instead takes a completed
array. This array is formed by parsing the opened map file with regular expressions.

16

7. Save Map files
Purpose: Save files so they can be used by the game
Implementation: This consists almost entirely of simply printing out the data structures
used to store their locations for the program already. Grass, stone, and roads are stored in
the top part of the file in a number:number / line arrangement, the walls are stored
individually as they are a sparse matrix rather than a full one.

8. Save Script files
Purpose: Save the scripts needed by the game for creating interactive elements
Implementation: Print out the object data in the format defined by the script system.
This changes on a per item basis see the section on script files for more details. The
information itself is stored in the array as a Perl structure which is easy to iterate through.
Most script items have the same information requirements, just arranged differently.

Script Engine Specs
Here is a list of all the features which can be in a script file, since these are not all implemented
in the game yet some of them are also not featured in the map editor.
File Layout:
--start<space><new line>
<commands><new line>
$<new line>
--<event name><space><new line>
<commands><new line>
$<new line>
--<event name><space><new line>
<commands><new line>
$<new line>
!<eof>

Commands:
createTree(string ObjectName, int Frame, int Xposition, int Yposition)

This creates a Tree object in the environment called ObjectName. The Frame num is the
picture of the Tree to be shown. It is placed at position (Xposition, Yposition).

createSlime(string ObjectName, int Xposition, int Yposition, int Color)

This creates a Slime object in the environment called ObjectName. It is placed at position
(Xposition, Yposition). The Color is what color the slime will be.

createCrystal(string ObjectName, int type, int Xposition, int Yposition, int Color)
This creates a Crystal object in the environment called ObjectName. It is placed at
position (Xposition, Yposition). The Color is what color the crystal will start, the type is
what direction it fires in.

move(string ObjectName, int Xposition, int Yposition)
 Moves an object that has already been created.

17

destroy(string ObjectName)
 Destroys an object in environment.

callme(string EventName)

Calls a specific event that is loaded in the Virtual Machine. Usually only used internally,
but can be used in the script file.

setTrig(string VariableName, string Relation, int Number, string EventName,string TriggerName)

Used to create a trigger that checks the given variable and number using Relation
operation given.

setCollide(string ObjectName, string ObjectName, string EventName, string TriggerName)
NOTE: TriggerName is the Trigger to remove after event has been done
Similar to setTrig, it checks if the two given objects have collided. It then calls the event
and removes the given trigger.

addList(string TriggerName, string Event)
 This adds a trigger to the list of active triggers. Event should be a setTrig or

setCollide that is in quotes. See Example script.

remove(string TriggerName)
 This deactivates the given trigger.
turn-on(string TriggerName)
 This reactivates the given trigger.
setExit(name ExitName, double Xposition, double Yposition, string FileToRun)
 This creates an exit at given location

This script is basic. In my game code it calls events steve collide and print. Which creates trees
Bob,Steve,and Joe and sets a collide trigger to Bob and Joe. When you run into Bob it calls
collide2 which sets a trigger to Steve. When you hit Steven he is moved, and the same goes with
Joe.

Example Script:
--steve
create("Bob", "tree", 100, 150)
move("Bob",234,200)
$
--collide
addList("test","setCollide(\"PLAYER\",\"Bob\",\"collide2\",\"test\")")
$
--collide2
addList("test2","setCollide(\"PLAYER\",\"Steve\",\"print2\",\"test2\")")
$
--print
create("Steve", "tree", 100, 200)

18

create("Joe", "tree", 100, 400)
addList("test3","setCollide(\"PLAYER\",\"Joe\",\"print3\",\"test3\")")
$
--print2
move("Steve",534,200)
$
--print3
move("Brian", "tree", 134, 500)
$
!
Program simple use instructions
To begin use new file, or open file from the file menu.
To use a brush simply select it in the brush menu then left click.
To erase a wall select the erase brush and left click on the wall.
To fill with a new background select if you want grass, stone, or both to be in the fill then choose

fill from the random fill menu.
To place an object simply select it from the object menu and then right click where you would

like it to be placed.
To see what the map file or scrip t file will look like without saving it use print map console and

print script console respectfully from the file menu.
To save the map or script file to a file use save as and save script from the file menu.

Install Requirements:
The synergy map editor requires that you have ActivePerl installed on a windows computer.
This can be downloaded from
http://www.activestate.com/Products/Download/Download.plex?id=ActivePerl
The code should run under Unix, it has not yet been tested however.
Once Active Perl is installed just extract the program to a directory and double click synedit.pl.

