
Attacking the Busy Beaver 5

New Non-halt behaviors from the BB(5) Search Space

Owen Kellett

April 29, 2004

Abstract

While provably Turing-unsolvable, the Busy Beaver
problem continues to be an intriguing exercise in com-
puter science theory. Despite its unsolvable nature,
attempting to determine results for small values of n
still offers significant insight on the nature of Turing
Machine behavior in general. Previous research done
by Kellett and Ross1 on the quadruple formulation
of the problem combined tree normalization search
techniques with specific non-halt detection routines
to explicitly confirm the value of the Busy Beaver
problem up through n = 4. For n = 5, however, these
efforts left 98 machines out of the 1.67× 1013 in the
search space which could not be eliminated with tree-
normalization, could not be categorized as one of the
specificly tested non-halting behaviors, and did not
halt after a pre-determined step limit. The present
paper focuses on establishing new non-halt behaviors
for these machines in an effort to complete the proof
of the value of the Busy Beaver function for n = 5.

1 Introduction

For a more thorough background of the origin of these
98 machines, we refer the reader to the aforemen-
tioned work done by Kellett and Ross in establishing
their results thus far. Nevertheless, we briefly sum-
marize the problem, their approach, and their results
before attacking the machines in question.

1.1 The Busy Beaver Problem

Defined by Tibor Rado in 1962, the Busy Beaver
problem uses the notion of the “most productive”
Turing machine out of a particular set of Turing ma-
chines. More specifically, we concentrate on “produc-
tivity” as being defined as the number of 1’s printed
on the tape after a machine halts when being started
on an infinitely blank tape. If a machine never halts

1http://www.cs.rpi.edu/ kelleo/busybeaver

when given this input, it is given a productivity value
of zero. Rado therefore defines BB(n) as the produc-
tivity of the most productive Turing machine that
has n states.

Given this definition, it is easy to define different
variations of this problem in terms of different formu-
lations of Turing machines and certain output config-
urations on the tape. For our purposes, we shall only
consider Turing machines of the quadruple formula-
tion variety where transitions can perform a write
action or a move action but not both.

1.2 Attack Strategy

A number of different strategies have been employed
in attempting to find candidate machines for the Busy
Beaver problem. These include brute force searches,
genetic algorithms, and behavior heuristics. How-
ever, some of these strategies can never hope to ex-
plicitly prove the value of BB(n) (any type of heuris-
tic strategy), while still others not only suffer from
the same pitfall, but also are not practical given the
enormity of the search space2 for even small n (brute
force).

Given this knowledge, Kellett and Ross chose to de-
velop a tree-normalization search strategy that main-
tained completeness of the search, while vastly re-
ducing the search space. In addition, they developed
specific non-halt detection routines that could prove
whether or not a particular machine exhibits a partic-
ular known non-halting behavior. Through the com-
bination of these techniques, they were able to clas-
sify every single machine in the search tree as either
1) pruned from the tree and not considered because
it is behavorially equivalent to some other machine in
the tree (tree normalization optimizations), 2) a non-
halter and therefore given a productivity value of zero
(non-halt detection routines), or 3) a halter in which

2Without going into the details, the search space for the
Busy Beaver problem grows exponentially as n increases. For
n = 5, for example, the search space is roughly 1.67× 1013

Turing machines

1



case its productivity can be easily determined. They
were able to do this for up to n = 4 and therefore
have proven the values of the quadruple formulation
of the Busy Beaver problem up through this value.

For n = 5 and beyond, however, the scope of their
non-halt detection algorithms does not fully cover the
search space. For BB(5) and BB(6), 98 and 42166
machines are respectively left unaccounted for. The
98 machines in the BB(5) problem are the focus of
the present paper.

1.3 Established Non-halt behaviors

We very briefly outline the non-halting detection be-
haviors that were used by Kellett and Ross to estab-
lish their results. Intuitively, many of the behaviors
exhibited by the 98 holdouts are minor variations of
those described below. For a more detailed overview
of these behaviors, please refer to the aforementioned
research.

• Backtracking : The backtracking algorithm
proves that a machine is a non-halter by demon-
strating that it can never reach a set of condi-
tions in which it does, or could potentially halt.
It “backtracks” from all possible halting states
and undefined transitions. If it is not possible to
reach any of these situations, then it is a non-
halter.

• Subset loops : Consider a machine with a cer-
tain subset of states where all possible transi-
tions from these states are defined as a transi-
tion to some other state in this subset. If none
of these states is the halt state, and the machine
enters this subset of states at some point during
execution, than this machine is a non-halter.

• Simple loops : A simple loop is one that moves
in a generally rightward or leftward direction in
some infinite repeatable pattern.

• Christmas trees : Christmas tree Turing ma-
chines sweep back and forth across the tape in a
provably repeatable fashion. Hence their execu-
tion sequence over time takes on the appearance
of a Christmas tree.

• Multi-sweep Christmas trees : Multi-sweep
Christmas trees are much like Christmas trees,
except they take more than one sweep across the
tape before exhibiting their repeatable nature.

• Leaning Christmas trees : Leaning Christ-
mas trees are again very similar to Christmas
trees. The main difference is that they do not

continue to push out their left and right ex-
tremum of each sweep in a symmetric manner.
Instead, the repeatable portion of the tape is
transposed to the left or to the right on each
sweep. Thus their execution sequence over time
resembles a Christmas tree that is “leaning” in
one direction.

• Counters : Counters mimic binary counters by
transforming the tape in a way such that at cer-
tain milestones, the tape configuration is repre-
sentative of the next sequential binary number.
Thus they count to infinity and never halt.

2 The Holdouts

Most of the behaviors described above are described
more specifically in the aforementioned research as
sets of concrete transitions that transform predefined
localized portions of the tape into certain configu-
rations. If it can be demonstrated that the set of
transitions will repeat infinitely, and that a particu-
lar machine transforms the tape in a manner iden-
tical to each of the transitions in the set, than the
machine can be deemed a non-halter without ques-
tion. However, the immediately clear difficulty with
this approach lies in identifying the components that
are defined in the set of transitions. We therefore be-
gin our analysis of the 98 holdouts with a subset that
can be identified as exhibiting one of the behaviors
defined above: Leaning Christmas trees. These ma-
chines escaped the current detection routine because
of certain difficulties with the problem just described.

2.1 Leaning Christmas Trees

Let us first formally define the notion of a leaning
Christmas Tree. A Turing Machine M is a Leaning
Christmas tree if either M or its mirror M c satisfy
the following conditions for some state s:

1. There are nonempty words C, N , U , V , and
X such that the tape configuration at some
time is 0∗[C][U ][Vs]0

∗, and at some later time
is 0∗[C][N ][U ][X][Vs]0

∗.

2. The following conversions hold, where X, X ′, Y ,
Y ′, Z, V , V ′, V ′′, U , and U ′ are nonempty words
and q and r are states (the symbol⇒ means that
M transforms the left-hand side into the right-
hand side after some number of steps):

• [X][Vs]0
∗ ⇒q [X ′][V ′]0∗

• [Xq][X
′]⇒q [X ′][Y ]

• [N ][Uq][X
′]⇒ [N ][N ][U ′][Y ′]r

2



• [Y ′][rY ]⇒ [Z][Y ′]r

• [Y ′][rV ′]⇒ [Z][V ′′s ]

3. [N ]i+1[U ′][Z]i[V ′′] = [N ]i+1[U ][X]i+1[V ] for all
i ≥ 1.

This definition, while complex, is also relatively
straight-forward. With an accurate identification of
the required words, it is easy to demonstrate whether
or not a machine transforms the tape exactly accord-
ing to the transitions defined above. However, given
just an arbitrary Turing machine, how does one go
about identifying these components? The general
strategy used in the current implementation is as fol-
lows:

1. Run the machine for an arbitrary number of
steps to establish a sweeping motion and account
for any startup effects that may be out of line
with the transitions defined.

2. Determine the step counters of the points in ex-
ecution where the machine reaches its right ex-
tremum, or in other words when the configura-
tion would be 0∗[C][N ]i[U ][X]i[Vs]0

∗ for some i.
Find these step counters for the next five ex-
trema following the initial startup of the ma-
chine.

3. Use the tape configurations at each extremum
and compare them to extract the components.
For example comparing the first two extremum
reveals the C, N , X, U , and V components by
examining the differences between the two con-
figurations.

4. Without going into too many of the specifics, the
rest of the tape components can be derived by at-
tempting to perform the above transitions at the
corresponding points where they should appear,
and extracting the additional components from
these procedures. If at any point this fails, then
the entire proof fails and the machine cannot be
classified as a leaning Christmas tree.

The main problem in this approach lies in the de-
termination of the right extrema in step 2. Because
left extremum of each sweep is not continually pushed
outward like in a standard Christmas tree, and in-
stead indeterminately lies to the right of the previous
left extremum, it is extremely difficult to determine
when these right extremum occur. This is especially
true in machines that exhibit both leftward and right-
ward minor motions during one major sweep in one
direction across the tape. As a result, the current im-
plementation does not always properly identify these

step counters in some machines that are in fact lean-
ing Christmas trees.

While the automated process is clearly difficult,
identifying the components by hand is time consum-
ing but possible. After a thorough examination of
the 98 holdouts, it was determined that 10 of them
(0, 1, 3, 9, 12, 13, 14, 32, 88, 95) are leaning Christmas
trees. A description of each of them along with the
correctly identified words can be found in the “anno-
tatedRuns/” directory of the included package.

2.2 Counter Variations

As previously noted, a more thorough description of
the already established non-halting behaviors can be
found in the work already done by Kellett and Ross.
We now particularly encourage the reader to become
familiar with the counter non-halting behavior. We
examine some particular variations of the counter be-
havior that can be found among the remaining hold-
outs.

2.2.1 Ordinary Counters

For easier reference, we include the definition of ordi-
nary counters based on that as described by Kellett
and Ross in the aforementioned research:

1. For machine M or its mirror M c, there are
nonempty words E, A, B, T , and Z. In the con-
text of a binary counter, E represents the end
cell that is used as a checkpoint. A and B are
used to respectively represent the values 0 and 1
of a binary number. T is a transitory word that
occurs during the incrementing of the counter in
between checkpoints. Finally, Z is a blank word
which consists of all 0’s and is of the same length
as A, B, and T .

2. At some point during execution, the machine
reaches the following configuration where c is
some state: 0∗[E][cZ][Z]∗.

3. The following transitions hold where r is also
some state:

• [cA]⇒r [B]

• [cB]⇒ [T ]c

• [cZ]⇒r [B]

• [Tr]⇒r [A]

• [Er]⇒ [E]c

3



2.2.2 Base 3 Counters

Intuitively, base 3 counters are extremely similar to
the already established counter behavior except for
the one obvious difference. Instead of counting in
representative binary notation, they count in base
3. For completeness, we outline the full set of re-
quirements for a machine to be considered a base 3
counter. Unsurprisingly, it is extremely similar to the
original counter specification shown above.

1. For machine M or its mirror M c, there are
nonempty words E, A, B, C, T , and Z. In the
context of a base 3 counter, E represents the end
cell that is used as the checkpoint. A, B, and C
are used to represent the values 0, 1, and 2 re-
spectively in terms of a base 3 number. T is
a transitory word that occurs during the incre-
menting of the representative number in between
checkpoints. Finally, Z is a blank word which
consists of all 0’s and is of the same length as
the A, B, C, and T words.

2. At some point during execution, the machine
reaches the following configuration where c is
some state: 0∗[E][cZ][Z]∗.

3. The following transitions hold where r is also
some state:

• [cA]⇒r [B]

• [cB]⇒r [C]

• [cC]⇒ [T ]c

• [cZ]⇒r [B]

• [Tr]⇒r [A]

• [Er]⇒ [E]c

This definition can clearly be extended for base 4,
base 5, etc. counters by adding additional compo-
nents and transitions similar to those involved in the
transformation of the base 2 specification to base 3.

2.2.3 Alternating Counters

Alternating counters deviate from the behavior of or-
dinary counters by the behavior of the transition that
occurs when the carry signal c hits the blank word
Z. In alternating counters, the size of the Z word is
smaller than the size of the words for the representa-
tive one, two, and transitory words. Therefore, when
the transformation occurs, the resulting tape config-
uration is in an inconsistent state. Therefore, each
time this transition occurs, the representative struc-
ture of the tape is modified in a similar fashion as the
last step that occurs in the Christmas tree behavior.

Let us look at the specification of this behavior more
closely to clarify:

1. For machine M or its mirror M c, there are
nonempty words E, E′, A, B, B′, T , and Z.
The A, B, and T words again respectively rep-
resent the values of 0, 1, and a transitory word.
The additional words E ′, and B′ are included to
account for the abnormally sized blank Z.

2. At some point during execution, the machine
reaches the following configuration where c is
some state: 0∗[E][T ][cZ][Z]∗.

3. The following transitions hold for some states c,
r, and r′:

• [cA]⇒r [B]

• [cB]⇒ [T ]c

• [cZ]⇒ [B′r′ ]

• [Br′ ]⇒r [B]

• [Tr]⇒r [A]

• [Er]⇒ [E]c

• [E′r]⇒ [E′]c

4. [E][T ]i[B′] = [E′][T ]i+1[B] for all i ≥ 1.

The last requirement allows one to redefine the
makeup of the tape in order for the correct transi-
tions to be applied. After the carry signal c reaches
a blank Z, the tape will be redefined from having an
E component to having an E ′. Then the next time
this occurs, it will be redefined again to an E. It will
“alternate” like this forever.

2.2.4 Resetting Counters

Intuitively, resetting counters periodically “reset”
themselves back to zero and then start counting up
again. In fact, resetting counters differ from ordi-
nary counters in only one minor modification to one
transition. In plain counters, when the carry signal c
reaches the blank word Z, the Z is transformed into
a B word which is representative of the number 1.
When resetting counters encounter this scenario, the
Z is instead transformed into an A which is the 0 rep-
resentative. Thus a resetting counter will count up to
20, reset, 21, reset, 22, reset, and so on. The formal
specification for a resetting counter is trivially derived
from the original counter definition in sect. 2.2.1. We
therefore do not include it here.

4



2.2.5 Complex Counters

Complex counters follow a modified specification to
that outlined in sect. 2.2.1 that increases the scope of
the behavior while still maintaining the guaranteed
non-haltingness of the machines that follow it. First
of all, the original description specifies two single
states c and r that must remain consistent through-
out the transisitions in order for the proof to hold. A
simple extension can redefine c and r as sets of states
instead of one single state. If this is done, than all
transitions which specify c as a state must be split
into n different transitions where n is the size of the
set c and each transition uses a different element of
the set c. The same would obviously apply to set r.
Similarly, an extension can be made for each of the
words A, B, T , etc. included in the specification.

Clearly, automated detection of such an extension
can become a significant burden. Even relatively
small sets used in the specification would give rise
to a significantly greater number of defined transi-
tions. Additionally, larger sets of words would give
rise to an even greater overall set of words that need
to be identified, which is one of the main obstacles
of the automated routines in the first place. Regard-
less, with a relatively small number of holdouts to
examine, machines of this nature can be identified by
manual analysis.

2.2.6 Combination Counters

All of the above counter behaviors have a very clear,
provably infinite specification which a machine must
follow in order to be considered in that particular
class of non-halt behavior. However, many of the 98
holdout machines do not fall into one explicit cat-
egory of counters. Instead, some of them exhibit
characteristics from some, or even all of the behav-
iors shown above. The specifications for any of these
combination classes of machines can be derived by
meshing the necessary specifications together. Going
through each of the possible combinations here would
be largely redundant, so we do not include them for
brevity.

After manually examining the holdouts, 30 of them
have been identified as some variation of the counter
behaviors described above. While some of them have
been explicitly proven as their identified behaviors
by manually identifying each of the components that
make up the specification, others remain as very
strong inferences based on a close examination of
their visual behavior and recognition of features com-
mon to each particular category.

Figure 1: Nested Christmas tree conceptual behavior

2.3 Nested Christmas Trees

Once again we invite the reader to refer to the afore-
mentioned work by Kellett and Ross in order to be-
come more familiar with the original Christmas tree
specification outlined in the work. As is described
there, Christmas tree non-halters are chracterized by
an infinite, repeatable, sweeping motion, where the
extreme right and left boundaries of the read head are
pushed farther out on each sweep. We have already
seen several variations of these Christmas trees, in-
cluding the already analyzed leaning Christmas trees,
as well as multi-sweep Christmas trees, which require
an arbitrarily large number of sweeps across the tape
to occur before the identifiable cyclic pattern repeats.
Let us now examine an even more bizarre variation
dubbed nested Christmas trees.

5



Nested Christmas trees exhibit the same repeatable
sweeping motion across the tape as do regular Christ-
mas trees. However, the one very distinct difference,
is that during each return sweep of the tree, the ma-
chine undergoes a miniature, nested set of sweeps re-
sembling a nested Christmas tree until it reaches the
previous extremum point of the read head. Consider
fig. 2 for a more intuitive understanding of how nested
Christmas trees work. Imagine that the top of the fig-
ure represents some particular point of execution of
the machine. Specifically, the read head is located at
the right most extremum point of the end of some
sweep. The end of the arrow thus represents the lo-
cation of the read head on the tape (which is not
shown for simplicity). Now as one progresses down
the figure, imagine that the tape at successively later
points in time are shown, and that the read head is
located at the intersection of the arrows and the in-
visible tape.

Thus we have a conceptual visual representation of
how the machine behaves over time. As we can see
by the figure, when the tape reaches the end of the
sweep moving to the left, it undergoes a nested set of
sweeps until it reaches the previous right extremum
point of the read head. It then sweeps back to the
left again, and starts up another nested tree. The
pattern continues forever and thus the machine is a
non-halter.

With a generalized understanding of how nested
Christmas trees work, let us formalize the behavior:

1. For machine M or its mirror M c, there are
nonempty words U , V , X, Y , Z, Un, V ′, and
V ′′. U and V are end components that cap the
left and the right sides of the overall tree. X, Y ,
and Z represent the repeating interior compo-
nents during different points of the execution of
the machine. V ′ and V ′′ are intermediate com-
ponents that the right end component is in while
the machine is in between sweeps. The Un com-
ponent is used as the right end component of the
nested sweeps.

2. At some point during execution, the machine
reaches the following configuration where s is
some state: 0∗[U ][X][Vs]0

∗.

3. The following transitions hold for some states q,
qn, and rn:

• [Vs]⇒q [V ′]

• [Xq]⇒q [Y ]

• 0∗[Uq]⇒ 0∗[Un]rn

• [rnY ]⇒qn [Z]

• One of the following two holds:

– 0∗[Unqn ]⇒ 0∗[Un]rn
– 0∗[Unqn ]⇒ 0∗[Un][Z]rn

• [rnZ]⇒ [Z]rn

• [rnV
′]⇒ [V ′′s ] if V ′ 6= Y

• [rn0∗]⇒ [V ′′s ]0∗ if V ′ = Y

• [Zqn ]⇒qn [Z]

4. ∀i(0∗[Un][Z]i[V ′′]0∗ ⇒ ∃j(0∗[U ][X]j [V ]0∗))

This specification is slightly complicated to ver-
bally explain, but it is essentially adapted from a
simplified version of the original Christmas tree spec-
ification with the inclusion of additional transitions
to encapsulate the nested Christmas tree behavior
of the return sweep. Again, after a manual analysis
of the holdout machines, it was inferred that 27 of
the remaining machines can be classified as nested
Christmas trees. Similar to the case with the coun-
ters, not all of these machines have been explicitly
confirmed as being nested Christmas trees. In fact,
it is likely that some of the 27 machines do not actu-
ally follow the above specification but require some
modification of it in order to be proven a non-halter.
The extremely time consuming nature of the process
of manually identifying the necessary components,
confirming the relevant transitions, and documenting
this work for every machine is the obstacle that has
prevented this work from being already completed.

Nevertheless, a visual inspection of the machines
mentioned leaves little doubt that they are at least
some variation of a nested Christmas tree. Explicit
proofs regarding the non-haltingness of each of these
machines will come at a later date.

2.4 Uneven multi-sweep Christmas
trees

Another 18 of the holdouts in question exhibit a be-
havior that is extremely similar to that of multi-sweep
Christmas trees. In fact, for each of these machines
in question, the specification that can prove its non-
haltingness is identical to the particular multi-sweep
class that it is a part of (2 sweeps, 3 sweeps, etc.).
Now of course the obvious question becomes why are
they not flagged by the automated detection routine
as such.

The details concerning how these machines escape
the automated routine are very specific to the imple-
mentation and therefore need not be fully discussed
here. However, refer to fig. 2 for a general idea as to
why these machines are not automatically detected.
As one can see, on certain sweeps, the read head

6



Figure 2: Uneven multi-sweep conceptual behavior

does not reach the extremum of the previous sweep.
Therefore, complications arise when attempting to
automatically extract the necessary components out-
lined in the specification.

Attempts to explicitly prove the non-haltingness of
these machines but manually identifying the compo-
nents and verifying the transitions of the specifica-
tions have not been made. Not only is this process
incredibly time consuming like those for the nested
Christmas trees and the counter variations, but the
hope is that the necessary changes can be incorpo-
rated into the automated detection routine so that
the proofs can be done automatically.

2.5 Other behaviors

After classifying the holdouts into the already men-
tioned categories, 13 machines remain that do not
follow any of the aforementioned behaviors. Formal
behaviors for these machines have not yet been de-
fined; however, careful visual analysis of their behav-
iors have led to the following very strong inferences:

• 1 of these machines is most definitely what we
call a “startup effects Christmas tree.” The cur-
rent Christmas tree detection routine runs the
machine for a specified number of steps before
beginning to attempt to identify components and
transitions of the Christmas tree behavior. This
accounts for any “startup effects” that the ma-
chine may undergo before exhibiting the infinite
repeatable behavior. This 1 machine in question
has an unusually long period where it exhibits
startup behavior and therefore overruns the ar-
bitrarily chosen “startup effects” threshold. A
simple increase of this threshold should pickup
this machine.

• 5 machines are somewhat similar to nested
Christmas trees. However, in these cases, instead
of performing a miniature nested Christmas tree
behavior on its return sweep, the machines ap-
pear to incorporate a nested counter into their
return sweeps. We call these machines nested
Counter Christmas trees.

• 1 machine appears to be the corresponding
equivalent of multi-sweep Christmas trees for
leaning Christmas trees. The behavior seems to
be a double sweep leaning Christmas tree which
would be an intuitive extension of leaning Christ-
mas trees.

• 3 machines are very bizarre and can be best de-
scribed as 1.5 sweep Christmas trees. On every

7



other sweep, the read head reaches only halfway
to the previous extremum point before returning.

• The final 3 machines are most easily named
asymmetric Christmas trees. They exhibit a sim-
ilar back and forth sweeping motion of regular
Christmas trees except their interior components
are not identical all the way from end to end.
Instead, one component repeats until halfway to
the other extremum, and then another, differ-
ent component repeats until the end. Thus it is
asymmetric.

2.6 Conclusion

Again, while many of the above classified machines
have not yet been explicitly proven, after careful vi-
sual analysis of all of them, it is extremely difficult
to conceive of the possibility that any of them halt
at some point. As a result, the 98 holdouts of the
BB(5) problem left by the work of Kellett and Ross
almost certainly exhibit one of the non-halting be-
haviors described. Therefore, with the work outlined
in this paper in conjunction with the work already
established by Kellett and Ross, it can be said with
almost 100% certainty that the established records
for the BB(5) problem are in fact the true champi-
ons, and that the result of the BB(5) is now explicitly
confirmed.

8


