Non-Halters in the Busy Beaver Problem
 presented by Owen Kellett
 4 April 2003

Bram van Heuveln
Boleslaw Szymanski
Selmer Bringsjord
Carlos Varela
Owen Kellett
Shailesh Kelkar
Kyle Ross

The Busy Beaver Problem

"Consider, for a fixed positive integer n, the class K_{n} of all the n card [state] binary Turing machines ... Let M be a Turing machine in this class K_{n}. Start M, with its card 1, on an all-0 tape. If M stops after a while, then M is termed a valid entry in the BB-n contest ... and its score $\sigma(M)$ is the number of 1's remaining on the tape at the time it stops ... [the set of σ-values] has a (unique) largest element which we denote by $\Sigma(n)$... It is practically trivial that this function $\Sigma(n)$ is not general recursive ... [but] it may be possible to determine the value of $\Sigma(n)$ for particular values of n."
-Lin \& Rado "Computer Studies of Turing Machine Problems" Journal of the Association for Computing Machinery, Vol. 12, No. 2 (April, 1964), pp. 196-212

Problem: How do we know when it stops?

- Turing Machine halting problem:
- Turing Machine M
- Input tape w
- Function : given any TM M and any Input tape w, return whether or not M halts on w.
- This function does not exist
- However!
- Certain routines can be defined which identify whether or not a particular machine exhibits a specific non halting behavior
- The Busy Beaver problem exhibits several recognizable behaviors

Backtracking

Subset Loops

start

- A Turing Machine M is classified as a subset loop if
- There is a set of states S such that every possible transition from each state in S is defined
- Every transition defined from a state in S is a transition to another state in S
- During execution, at some point the machine enters one of the states in S
start

- A machine is classified as a simple loop if (given words of arbitrary length X, Y, V, and C and state s):
- The following tape configuration is reached: $0^{*}[C]\left[X_{s}\right][Y] 0^{*}$ -and one of the following-
- The same tape configuration is reached at a later point
-or-
- The following tape configuration is reached at a later point: $0^{*}[C][V]\left[X_{s}\right][Y] 0^{*}$
- Between these points, the read head never moves past the left edge of the initial X
- The corresponding mirror of the above specification also identifies a simple loop
-Machlin and Stout. "The Complex Behavior of Simple Machines" Physica D 42 (1990). pp. 85-98

Example: Simple Loop

- The tape configuration of the most recent occurrence of each <state, symbol> pair is saved
- This particular instance is the pair <4,1>
- Example machine is a mirror version of the simple loop specification
- The next tape configuration of $\langle 4,1>$ is compared to the previous
- In this case, all components are identifiable and match
- Location of read head is in same relative location
- The read head never moves to the right of the original X (remember this is a mirror simple loop)
- All conditions are satisfied, machine is a simple loop non-halter

Christmas Trees

- In the general sense, a christmas tree non-halter sweeps back and forth across the tape in a repeatable manner:
$\left\{\begin{array}{l}\mathbf{1 1 0 1 0 1 0} \\ 1101010 \\ 1101010 \\ 1111010 \\ 1111010 \\ 1111 n 1 n\end{array}\right.$

State 1
State 2
State 0
State 1
State 2

111010
111010
111010
101010
101010
0101010
State 3
State 3
State 0
State 3
State 3
State 0

slale u
State 1
State 2
State 0
State 1
State 2
State 0
State 1
State 2

Christmas Tree Detection: Step 1

0* [U] [V] 0*	$s=2$
1110	State 2
1110	State 3
1110	State 0
1010	State 3
1010	State 3
01010	State 0
11010	State 1
11010	State 2
11010	State 0
11110	State 1
11110	State 2
11110	State 0
11111	State 1
111110	State 2
0* [U] [X] [V] 0*	$\mathrm{S}=2$

- The tape exhibits a back and forth sweeping motion
- After one sweep, the tape has the following configuration:
- $0^{*}[\mathrm{U}]\left[\mathrm{V}_{\mathrm{s}}\right] 0^{*}$
- After the next sweep, a new middle part, and the same end parts are seen:
$-0^{*}[U][X]\left[V_{s}\right] 0^{*}$

Christmas Tree Detection: Step 2

- The following holds:
- $\left.0^{*}\left[U^{\prime}\right][Z][V] s\right] 0^{*}=0^{*}[U][X][X][V s] 0^{*}$
[11111110]
[11111110]

Alternating Christmas Trees

- The machine transforms the tape much like a normal Christmas tree, however, it takes two sweeps across the tape rather than one to complete one cycle

Alternating Christmas Trees

$$
\underset{\left.0^{*}\left[U^{*}\left[U^{\prime}\right][\mathrm{Z}][\mathrm{Z}][\mathrm{Z}][\mathrm{Z}][\mathrm{Z}][\mathrm{Y}][\mathrm{Y}][\mathrm{Z}]\left[\mathrm{V}^{\prime}\right] \mathrm{V}^{\prime}\right] 0^{*}\right]}{0^{*}}
$$

$0^{*}\left[U^{\prime \prime}\right][M][M][M][V "]{ }^{\prime} 0^{*}$ $0^{*}\left[U^{\prime \prime}\right][N][N][N]\left[V V^{\prime \prime}\right] 0^{*}$ 0*[U][X][X][X][X][V]0*

Busy Beaver Non-Halters

	$\mathrm{n}=3$		$\mathrm{n}=4$		$\mathrm{n}=5$	
backTrack	817	82.1106%	47102	85.1538%	3842187	87.1350%
subsetLoop	17	1.7085%	749	1.3541%	38761	0.8790%
simpleLoop	159	15.9799%	7243	13.0943%	508156	11.5242%
christmasTree	2	0.2010%	198	0.3580%	18012	0.4085%
alternateChristmasTree	0	0.0000%	23	0.0416%	2818	0.0639%
holdout	0	0.0000%	5	0.0090%	2623	0.0595%
total	995		55314		4409466	

*Note: Machines are classified according to the first routine which tests positive. The detection routines are applied in succession from top to bottom for each individual machine.

B4 Holdouts

- Two of the holdouts of the B4 exhibited the one other behavior specified by Brady but not yet implemented as a detection routine for this project
- These machines mimic binary counters by altering the tape in such a way that it progressively counts in binary format halt

B4-counter2

B4-Counter1 Execution

0
1
10
100
101
101
101
101
101
100
1000
1001
1001
1001
1001
1001
1001
$1 0 \longdiv { 1 1 }$
1011
1011
1011
1011
1001
1001
1000
10000

State 0
State
State 2
State 3
State 0
State 1
State 1
State 2
State 3
State 2
State 3
State 0
State 1
State 1
State 1
State 2
State 3
State 0
State 1
State 1
State 2
State 3
State 2
State 3
State
State 3

10001
10001
10001
10001
10001
10001
10001
10101
10101
10101
10101
10101
10001
10001
10011
10011
10011
10011
10011
10011
10111
10111 State 1
10111 State 1
10111 State 2
10111 State 3
10011 State 2
*Note: this machine generates binary numbers that read from right to left rather than the conventional left to right

B4 Holdouts

- Two of the holdouts are very similar to alternating christmas trees

B4-unevenAlternateChristmasTree1

0	State 0
1	State 1
10	State 2
100	State 3
100	State 1
100	State 0
0100	State 0
1100	State 1
1100	State 2
1100	State 1
1100	State 0
1100	State 0
01100	State 0
11100	State 1
11100	State 2
11100	State 1
11100	State 2
11100	State 3
11100	State 1
11100	State 0
11100	State 0
11100	State 0
011100	State 0
111100	State 1
111100	State 2
111100	State 1
111100	State 2
111100	State 1

B4-uneven Alternate Christmas Tree1 Execution

- Recognizable alternating sweeping motion as seen in alternating Christmas trees
- Right boundary of intermediate sweep does not at least reach the right boundary of the previous major sweep
- Current implementation assumes that each sweep spans at least as far as the previous sweep
- Only minor modifications to the alternating Christmas tree routine should be necessary to account for this behavior

B4 Holdouts

- The final holdout escapes the Christmas tree detection routine because of unusual startup effects

0	State 0
1	State 1
10	State 1
100	State 2
100	State 2
100	State 2
0100	State 3
00100	State 0
10100	State 1
10100	State 1
10100	State 2
10100	State 3
10100	State 0
010100	State 0
110100	State 2
110100	State 3
110100	State 0
110100	State 0
0110100	State 0
1110100	State 1
1110100	State 1
1110100	State
1110100	State 1
1110100	State

B4-startup Effects Christmas Tree1 Execution

- The Christmas tree detection routine runs the machine for a hundred transitions or so before looking for Christmas tree behavior to account for startup effects
- These transitions, however, are still observed to establish left and right boundaries for each sweep of the tape
- This machine creates a false right boundary during the startup phase
- Again, only minor modifications to the Christmas tree routine should be necessary to account for this behavior

Future Work

- Counter detection routines
- Brady goes into more detail regarding the behavior of Counters, specifying a grammar in the same format as the Christmas tree grammar
- Also mentions Counter variations (unary, binary, base-3, etc.)
- Christmas tree variations
- Account for startup effects shown in B4 holdout
- Uneven alternating Christmas trees
- Multi-sweep (3,4,5... sweeps) alternating Christmas trees (seen in several of the random B5 holdouts that l've looked at)
- Several more

