
Non-Halters in the
Busy Beaver Problem

presented by Owen Kellett
4 April 2003

Bram van Heuveln
Boleslaw Szymanski

Selmer Bringsjord
Carlos Varela
Owen Kellett

Shailesh Kelkar
Kyle Ross

The Busy Beaver Problem

“Consider, for a fixed positive integer n, the class Kn of all the n-
card [state] binary Turing machines ... Let M be a Turing
machine in this class Kn. Start M, with its card 1, on an all-0
tape. If M stops after a while, then M is termed a valid entry in
the BB-n contest ... and its score (M) is the number of 1's
remaining on the tape at the time it stops ... [the set of -values]
has a (unique) largest element which we denote by (n) ... It is
practically trivial that this function (n) is not general recursive
... [but] it may be possible to determine the value of (n) for
particular values of n.”

-Lin & Rado “Computer Studies of Turing Machine Problems” Journal of the
Association for Computing Machinery, Vol. 12, No. 2 (April, 1964), pp. 196-212

Problem: How do we know when it stops?

• Turing Machine halting problem:
– Turing Machine M

– Input tape w

– Function : given any TM M and any Input tape w, return whether or not M halts
on w.

– This function does not exist

• However!

• Certain routines can be defined which identify whether or not a particular
machine exhibits a specific non halting behavior

• The Busy Beaver problem exhibits several recognizable behaviors

Backtracking

q[0]x1 halt
10

q[3]x1 q[0]xL
113

101

q[2]x0 q[3]xR
021

013
Does not match!

Non-halter!

Local tapes match, continue

Subset Loops

• A Turing Machine M is classified as a subset loop if
– There is a set of states S such that every possible transition from each state

in S is defined

– Every transition defined from a state in S is a transition to another state in S
– During execution, at some point the machine enters one of the states in S

-Machlin and Stout. “The Complex Behavior of Simple Machines” Physica D 42 (1990). pp. 85-98

Simple Loops

• A machine is classified as a simple loop if (given words of arbitrary length X,
Y, V, and C and state s):

– The following tape configuration is reached: 0*[C][Xs][Y]0*
-and one of the following-

– The same tape configuration is reached at a later point
-or-

– The following tape configuration is reached at a later point: 0*[C][V][Xs][Y]0*
– Between these points, the read head never moves past the left edge of the initial X

• The corresponding mirror of the above specification also identifies a simple
loop

Example: Simple Loop
0 State 0
1 State 1
10 State 2
100 State 3
1000 State 4
10000 State 5
10000 State 5
10000 State 5
10000 State 5
10000 State 5
010000 State 3
010000 State 4
010000 State 2
010000 State 3
010000 State 1
0010000 State 0
1010000 State 1
1010000 State 2
1010000 State 3
1010000 State 1
1010000 State 0
01010000 State 4
01010000 State 5
01010000 State 3
01010000 State 4
01010000 State 2
01010000 State 3
01010000 State 1
001010000 State 0
101010000 State 1
101010000 State 2
101010000 State 3
101010000 State 1
101010000 State 0

• The tape configuration of the most
recent occurrence of each <state,
symbol> pair is saved

• This particular instance is the pair
<4,1>

• Example machine is a mirror version of
the simple loop specification

• The next tape configuration of <4,1> is
compared to the previous

• In this case, all components are
identifiable and match

• Location of read head is in same
relative location

• The read head never moves to the
right of the original X (remember this is
a mirror simple loop)

• All conditions are satisfied, machine is
a simple loop non-halter

0* [Y] [X] [C] 0*

0* [Y] [X] [V] [C] 0*

Christmas Trees
• In the general sense, a christmas tree non-halter sweeps back and forth across the

tape in a repeatable manner:

0 State 0
1 State 1
10 State 2
10 State 3

010 State 0
110 State 1
110 State 2
110 State 0
111 State 1
1110 State 2
1110 State 3
1110 State 0
1010 State 3
1010 State 3
01010 State 0
11010 State 1
11010 State 2
11010 State 0
11110 State 1
11110 State 2
11110 State 0
11111 State 1
111110 State 2
111110 State 3
111110 State 0
111010 State 3
111010 State 3
111010 State 0
101010 State 3
101010 State 3
0101010 State 0

1101010 State 1
1101010 State 2
1101010 State 0
1111010 State 1
1111010 State 2
1111010 State 0
1111110 State 1
1111110 State 2
1111110 State 0
1111111 State 1
11111110 State 2
11111110 State 3
11111110 State 0
11111010 State 3
11111010 State 3
11111010 State 0
11101010 State 3
11101010 State 3
11101010 State 0
10101010 State 3
10101010 State 3
010101010 State 0
110101010 State 1
110101010 State 2
110101010 State 0
111101010 State 1
111101010 State 2
111101010 State 0
111111010 State 1
111111010 State 2
111111010 State 0
111111110 State 1
111111110 State 2
111111110 State 0
111111111 State 1
1111111110 State 2

Christmas Tree Detection: Step 1

1110 State 2
1110 State 3
1110 State 0
1010 State 3
1010 State 3

01010 State 0
11010 State 1
11010 State 2
11010 State 0
11110 State 1
11110 State 2
11110 State 0
11111 State 1
111110 State 2

• The tape exhibits a back and forth
sweeping motion0* [U] [V] 0*

0* [U] [X] [V] 0*

• After one sweep, the tape has the
following configuration:
– 0*[U][Vs]0*

• After the next sweep, a new middle
part, and the same end parts are seen:
– 0*[U][X][Vs]0*

s=2

s=2

111110 State 2
111110 State 3
111110 State 0
111010 State 3
111010 State 3
111010 State 0
101010 State 3
101010 State 3

0101010 State 0
1101010 State 1
1101010 State 2
1101010 State 0
1111010 State 1
1111010 State 2
1111010 State 0
1111110 State 1
1111110 State 2
1111110 State 0
1111111 State 1
11111110 State 2

Christmas Tree Detection: Step 2
• The machine alters the tape according

to the following grammar
– [X][Vs] q[X’][V’]0*
– [Xq][X’] q[X’][Y]
– 0*[Uq][X’] 0*[U’][Y’]r
– [Y’][rY] [Z][Y’]r
– [Y’][rV’] [Z][V’’s]

0*[Uq][X’][V’]0*

0*[U][X][Vs]0*

0*[U’][Y’][rV’]0*

0*[U’][Z][V’’s]0*

• U = 11

• V = 10

• X = 11

• X’ = 10
• V’ = 10

• U’ = 111

• Y’ = 11
• Z = 11

• V’’ = 110

• s = 2
• q = 0

• r = 2

• The following holds:
– 0*[U’][Z][V’’s]0* = 0*[U][X][X][Vs]0*

[11111110] [11111110]

11111110 State 2
11111110 State 3
11111110 State 0
11111010 State 3
11111010 State 3
11111010 State 0
11101010 State 3
11101010 State 3
11101010 State 0
10101010 State 3
10101010 State 3

010101010 State 0
110101010 State 1
110101010 State 2
110101010 State 0
111101010 State 1
111101010 State 2
111101010 State 0
111111010 State 1
111111010 State 2
111111010 State 0
111111110 State 1
111111110 State 2
111111110 State 0
111111111 State 1
1111111110 State 2

Christmas Tree Detection: Step 3
• The machine alters the tape according

to the following grammar
– [X][Vs] q[X’][V’]0*
– [Xq][X’] q[X’][Y]
– 0*[Uq][X’] 0*[U’][Y’]r
– [Y’][rY] [Z][Y’]r
– [Y’][rV’] [Z][V’’s]

0*[U][Xq][X’][V’]0*

0*[U][X][X][Vs]0*

0*[U’][Y’][rY][V’]0*

0*[U’][Z][Y’][rV’]0*

0*[Uq][X’][Y][V’]0*

0*[U’][Z][Z][V’’s]0*

• U = 11

• V = 10

• X = 11

• X’ = 10
• V’ = 10

• U’ = 111

• Y’ = 11
• Z = 11

• V’’ = 110

• Y = 10

• s = 2
• q = 0

• r = 2

• The following holds:
– 0*[U’][Z][Z][V’’s]0* = 0*[U][X][X][X][Vs]0*

[1111111110] [1111111110]

Alternating Christmas Trees
• The machine transforms the tape much like a normal Christmas tree,

however, it takes two sweeps across the tape rather than one to complete
one cycle

0*[U][X][X][X][V]0*

0*[U’][Y][Y][Y][V’]0*

0*[U’][Z][Z][Z][V’’]0*
=

0*[U][X][X][X][X][V]0*

0*[U][X][X][X][V]0*

0*[U’][Y][Y][Y][V’]0*

0*[U’][Z][Z][Z][V’’]0*

0*[U’’][M][M][M][V’’’]0*

0*[U’’][N][N][N][V’’’’]0*
=

0*[U][X][X][X][X][V]0*

Christmas Trees Alternating Christmas Trees

Busy Beaver Non-Halters

*Note: Machines are classified according to the first routine which tests positive. The
detection routines are applied in succession from top to bottom for each individual
machine.

440946655314995total

0.0595%26230.0090%50.0000%0holdout

0.0639%28180.0416%230.0000%0alternateChristmasTree

0.4085%180120.3580%1980.2010%2christmasTree

11.5242%50815613.0943%724315.9799%159simpleLoop

0.8790%387611.3541%7491.7085%17subsetLoop

87.1350%384218785.1538%4710282.1106%817backTrack

n = 5n = 4n = 3

B4 Holdouts
• Two of the holdouts of the B4 exhibited the one other behavior

specified by Brady but not yet implemented as a detection routine
for this project

• These machines mimic binary counters by altering the tape in such
a way that it progressively counts in binary format

B4-counter1

B4-counter2

B4-Counter1 Execution
0 State 0
1 State 1
10 State 2
100 State 3
101 State 0
101 State 1
101 State 1
101 State 2
101 State 3
100 State 2
1000 State 3
1001 State 0
1001 State 1
1001 State 1
1001 State 1
1001 State 2
1001 State 3
1011 State 0
1011 State 1
1011 State 1
1011 State 2
1011 State 3
1001 State 2
1001 State 3
1000 State 2
10000 State 3

10001 State 0
10001 State 1
10001 State 1
10001 State 1
10001 State 1
10001 State 2
10001 State 3
10101 State 0
10101 State 1
10101 State 1
10101 State 2
10101 State 3
10001 State 2
10001 State 3
10011 State 0
10011 State 1
10011 State 1
10011 State 1
10011 State 2
10011 State 3
10111 State 0
10111 State 1
10111 State 1
10111 State 2
10111 State 3
10011 State 2

*Note: this machine
generates binary
numbers that read
from right to left
rather than the
conventional left to
right

B4 Holdouts
• Two of the holdouts are very similar to alternating christmas trees

B4-unevenAlternateChristmasTree1

B4-unevenAlternateChristmasTree2

B4-uneven Alternate
Christmas Tree1 Execution

0 State 0
1 State 1
10 State 2
100 State 3
100 State 1
100 State 0

0100 State 0
1100 State 1
1100 State 2
1100 State 1
1100 State 0
1100 State 0

01100 State 0
11100 State 1
11100 State 2
11100 State 1
11100 State 2
11100 State 3
11100 State 1
11100 State 0
11100 State 0
11100 State 0

011100 State 0
111100 State 1
111100 State 2
111100 State 1
111100 State 2
111100 State 1

• Recognizable alternating sweeping motion
as seen in alternating Christmas trees

• Right boundary of intermediate sweep
does not at least reach the right boundary
of the previous major sweep

• Current implementation assumes that each
sweep spans at least as far as the
previous sweep

• Only minor modifications to the alternating
Christmas tree routine should be
necessary to account for this behavior

B4 Holdouts
• The final holdout escapes the Christmas tree detection routine

because of unusual startup effects

B4-startupEffectsChristmasTree1

B4-startup Effects
Christmas Tree1 Execution

0 State 0
1 State 1
10 State 1
100 State 2
100 State 2
100 State 2

0100 State 3
00100 State 0
10100 State 1
10100 State 1
10100 State 2
10100 State 3
10100 State 0

010100 State 0
110100 State 1
110100 State 1
110100 State 1
110100 State 2
110100 State 3
110100 State 0
110100 State 0

0110100 State 0
1110100 State 1
1110100 State 1
1110100 State 1
1110100 State 1
1110100 State 2

• The Christmas tree detection routine runs
the machine for a hundred transitions or so
before looking for Christmas tree behavior
to account for startup effects

• These transitions, however, are still
observed to establish left and right
boundaries for each sweep of the tape

• This machine creates a false right
boundary during the startup phase

• Again, only minor modifications to the
Christmas tree routine should be
necessary to account for this behavior

Future Work
• Counter detection routines

– Brady goes into more detail regarding the behavior of Counters,
specifying a grammar in the same format as the Christmas tree
grammar

– Also mentions Counter variations (unary, binary, base-3, etc.)

• Christmas tree variations
– Account for startup effects shown in B4 holdout
– Uneven alternating Christmas trees
– Multi-sweep (3,4,5… sweeps) alternating Christmas trees (seen

in several of the random B5 holdouts that I’ve looked at)
– Several more

