#### Non-Halters in the Busy Beaver Problem

presented by Owen Kellett 4 April 2003

Bram van Heuveln Boleslaw Szymanski Selmer Bringsjord Carlos Varela Owen Kellett Shailesh Kelkar Kyle Ross

# The Busy Beaver Problem

"Consider, for a fixed positive integer *n*, the class  $K_n$  of all the *n*-card [state] binary Turing machines ... Let *M* be a Turing machine in this class  $K_n$ . Start *M*, with its card 1, on an all-0 tape. If *M* stops after a while, then *M* is termed a valid entry in the BB-n contest ... and its score  $\sigma(M)$  is the number of 1's remaining on the tape at the time it stops ... [the set of  $\sigma$ -values] has a (unique) largest element which we denote by  $\Sigma(n)$  ... It is practically trivial that this function  $\Sigma(n)$  is not general recursive ... [but] it may be possible to determine the value of  $\Sigma(n)$  for particular values of *n*."

*-Lin & Rado "Computer Studies of Turing Machine Problems" Journal of the Association for Computing Machinery, Vol. 12, No. 2 (April, 1964), pp. 196-212* 

#### Problem: How do we know when it stops?

- Turing Machine halting problem:
  - Turing Machine M
  - Input tape w
  - Function : given any TM *M* and any Input tape *w*, return whether or not *M* halts on *w*.
  - This function does not exist
- However!
- Certain routines can be defined which identify whether or not a particular machine exhibits a specific non halting behavior
- The Busy Beaver problem exhibits several recognizable behaviors

#### Backtracking





# Subset Loops



- A Turing Machine M is classified as a subset loop if
  - There is a set of states S such that every possible transition from each state in S is defined
  - Every transition defined from a state in S is a transition to another state in S
  - During execution, at some point the machine enters one of the states in S



- A machine is classified as a simple loop if (given words of arbitrary length X, Y, V, and C and state s):
  - The following tape configuration is reached:  $0^{(C]}[X_s][Y]0^*$

-and one of the following-

- The same tape configuration is reached at a later point

-or-

- The following tape configuration is reached at a later point: 0\*[C][V][X<sub>s</sub>][Y]0\*
- Between these points, the read head never moves past the left edge of the initial X
- The corresponding mirror of the above specification also identifies a simple loop

-Machlin and Stout. "The Complex Behavior of Simple Machines" Physica D 42 (1990). pp. 85-98

# Example: Simple Loop

- 0 State 0 1 State 1 10 State 2 10**0** State 3 100**0** State 4 1000**0** State 5 ate 5 0\* [Y] [X] [C] 0\* ate 5 0000 State 5 10000 State 5 010000 State 3 State 4 010000 **0**10000 State 2 010000 State 3 **0**10000 State 1 **0**010000 State 0 **1**010000 State 1 1010000 State 2 1010000 State 3 1**0**10000 State 1 **1**010000 State 0 **0**1010000 State 4 0**1**010000 State 5 **0**1010000 State 3 01010000 State 4 01010000 State 2 **011**0**0**00 State 3 01010000State 1 ftate 0 0\* [Y] [X] [V] [C] 0\* ltate 1 Jtate 2 State 3 10**1**010000 1**0**1010000 State 1 **1**01010000 State 0
- The tape configuration of the most recent occurrence of each <state, symbol> pair is saved
- This particular instance is the pair <4,1>
- Example machine is a mirror version of the simple loop specification
- The next tape configuration of <4,1> is compared to the previous
- In this case, all components are identifiable and match
- Location of read head is in same relative location
- The read head never moves to the right of the original X (remember this is a mirror simple loop)
- All conditions are satisfied, machine is a simple loop non-halter

# Christmas tree non-halter sweeps back and forth across the

| • | In the general | sense, a christmas tre | ee non-halter sweeps back and t | orth a       |
|---|----------------|------------------------|---------------------------------|--------------|
|   | tape in a repe | atable manner:         | <b>1</b> 101010 Sta             | te 1         |
|   |                |                        | 1 <b>1</b> 01010 Sta            | te 2         |
|   | 0              | State 0                | / 11 <b>0</b> 1010 Sta          | te O         |
|   | 1              | State 1                | / 11 <b>1</b> 1010 Sta          | te 1         |
|   | 10             | State 2                | / 111 <b>1</b> 010 Sta          | te 2         |
|   |                |                        |                                 | ⊥ - <b>^</b> |



| 111 <b>0</b> 10 | State | 3 | / |
|-----------------|-------|---|---|
| 11 <b>1</b> 010 | State | 3 |   |
| 1 <b>1</b> 1010 | State | 0 |   |
| 1 <b>0</b> 1010 | State | 3 | / |
| <b>1</b> 01010  | State | 3 | / |
| <b>0</b> 101010 | State | 0 |   |
|                 |       |   |   |

| TTTT <b>N</b> TOTO | ыаге  | υ |
|--------------------|-------|---|
| 1111 <b>1</b> 1010 | State | 1 |
| 11111 <b>1</b> 010 | State | 2 |
| 111111 <b>0</b> 10 | State | 0 |
| 111111 <b>1</b> 10 | State | 1 |
| 1111111 <b>1</b> 0 | State | 2 |
| 11111111 <b>0</b>  | State | 0 |
| 11111111 <b>1</b>  | State | 1 |
| 111111111 <b>0</b> | State | 2 |
|                    |       |   |

# Christmas Tree Detection: Step 1

| 0* [U] [V] 0*     | s=2     |
|-------------------|---------|
| 1110              | State 2 |
| 11 <b>1</b> 0     | State 3 |
| 1 <b>1</b> 10     | State 0 |
| 1 <b>0</b> 10     | State 3 |
| <b>1</b> 010      | State 3 |
| <b>0</b> 1010     | State 0 |
| <b>1</b> 1010     | State 1 |
| 1 <b>1</b> 010    | State 2 |
| 11 <b>0</b> 10    | State 0 |
| 11 <b>1</b> 10    | State 1 |
| 111 <b>1</b> 0    | State 2 |
| 1111 <b>0</b>     | State 0 |
| 1111 <b>1</b>     | State 1 |
| 111110            | State 2 |
| 0* [U] [X] [V] 0* | s=2     |

• The tape exhibits a back and forth sweeping motion

- After one sweep, the tape has the following configuration:
  - $0^{*}[U][V_{s}]0^{*}$

 After the next sweep, a new middle part, and the same end parts are seen:
– 0\*[U][X][V<sub>s</sub>]0\*

# Christmas Tree Detection: Step 2

|    | 1111               | 110         | State   | 2   |              | The machine alters the t                                                             | ape | e accordir     | ng |              |
|----|--------------------|-------------|---------|-----|--------------|--------------------------------------------------------------------------------------|-----|----------------|----|--------------|
|    | 1111               | 110         | State   | 3   |              | to the following gramma                                                              |     |                | -  |              |
|    | 11 <mark>1:</mark> | <b>1</b> 10 | State   | 0   |              | $- [X][V_s] \rightarrow {}_{q}[X'][V']0^*$                                           |     |                |    |              |
|    | 11 <mark>1(</mark> | <b>)</b> 10 | State   | 3   |              | $- [X_{a}][X'] \rightarrow [X'][Y]$                                                  |     |                |    |              |
|    | 11 <mark>1(</mark> | 010         | State   | 3   |              | $- 0^{*}[U_{n}][X'] \rightarrow 0^{*}[U'][Y']_{n}$                                   |     |                |    |              |
|    | 111(               | 010         | State   | 0   | $\backslash$ | $- [Y'][Y] \rightarrow [Z][Y']$                                                      |     |                |    |              |
|    | 1010               | 010         | State   | 3 🔨 | $\backslash$ | $[ \downarrow ] I_{\Gamma} \downarrow ] \downarrow [ \Box ] I_{\Gamma} \downarrow ]$ |     |                |    |              |
|    | <b>1</b> 01(       | 010         | State   | 3   |              | $- [[1]]_{r} \vee ] \rightarrow [2][\vee_{s}]$                                       |     |                |    |              |
| 0  | 1010               | 010         | State   | 0   |              |                                                                                      | •   | U = 11         | •  | s = 2        |
| 1  | 1010               | 010         | State   | 1   | <hr/>        | 0*[U][X][V <sub>s</sub> ]0*                                                          |     | V - 10         | •  | a – 0        |
| 1: | <b>1</b> 01(       | 010         | State   | 2   | $\mathbf{n}$ |                                                                                      |     | V = 10         | •  | <b>q</b> = 0 |
| 1  | 1010               | 010         | State   | 0   |              | 0*[U_][X'][V']0*                                                                     | •   | X = 11         | •  | r = 2        |
| 1  | 1 <b>1</b> 1(      | 010         | State   | 1   |              |                                                                                      | •   | X' = 10        |    |              |
| 1  | 11 <b>1</b> (      | 010         | State   | 2   |              |                                                                                      | •   | V' = 10        |    |              |
| 1  | 111(               | 010         | State   | 0   |              | 0*[U'][Y'][ <sub>r</sub> V']0*                                                       | •   | U' = 111       |    |              |
| 1  | 1111               | 110         | State   | 1   |              |                                                                                      |     | $\nabla' = 11$ |    |              |
| 1: | 1111               | 110         | State   | 2   |              | 0*[U'][Z][V'' <sub>s</sub> ]0*                                                       |     |                |    |              |
| 1  | 111                | 110         | State   | 0   | /            |                                                                                      | •   | ∠ = 11         |    |              |
| 1  | 111                | 111         | State   | 1   |              |                                                                                      | •   | V'' = 110      |    |              |
| 1: | 111                | 111(        | 0 State | 2   |              |                                                                                      |     |                |    |              |

• The following holds:

 $- 0^{*}[U'][Z][V''s]0^{*} = 0^{*}[U][X][X][Vs]0^{*}$ 

[11111110] [11111110]

| C              | hris                | tma   | S | Tre               | e Detec                                                  | tion:               | Step           | 3  |                  |
|----------------|---------------------|-------|---|-------------------|----------------------------------------------------------|---------------------|----------------|----|------------------|
| 1111           | 1110                | State | 2 | •                 | The mechine off                                          | ara tha ta          |                |    |                  |
| 1111           | 1110                | State | 3 | •                 | The machine all                                          | ers the ta          | pe accordir    | ig |                  |
| 1111           | 1 <b>1</b> 10       | State | 0 |                   | to the following (                                       | grammar             |                |    |                  |
| 1111           | 1 <b>0</b> 10       | State | 3 |                   | $- [X][V_s] \rightarrow [X']$                            | [V']0*              |                |    |                  |
| 11111          | <b>1</b> 010        | State | 3 |                   | $- [X_{a}][X'] \rightarrow [X']$                         | ][Y]                |                |    |                  |
| 1111           | 1010                | State | 0 |                   | $-$ 0*[U <sub>0</sub> ][X'] $\rightarrow$ 0 <sup>*</sup> | *[U'][Y'],          |                |    |                  |
| 1110           | 1010                | State | 3 | $\mathbf{N}$      | $- [Y'][Y] \rightarrow [Z][Y]$                           | (']                 |                |    |                  |
| 11 <b>1</b> 0  | 1010                | State | 3 |                   | $- [Y'][V'] \rightarrow [7][V']$                         | V'' 1               |                |    |                  |
| 1110           | 1010                | State | 0 |                   |                                                          | Y SJ                |                |    |                  |
| 1010           | 1010                | State | 3 | $\mathbf{k}$      |                                                          | ,  •                | • U = 11       | •  | s = 2            |
| <b>1</b> 010   | 1010                | State | 3 |                   | 0*[U][X][X][V <sub>s</sub> ]0*                           |                     | • V = 10       | •  | $\mathbf{q} = 0$ |
| <b>0</b> 1010  | 1010                | State | 0 |                   |                                                          | į l                 | X = 11         | •  | r – 2            |
| <b>1</b> 1010  | 1010                | State | 1 | $\langle \rangle$ |                                                          |                     | X = 11         | •  | 1 – 2            |
| 1 <b>1</b> 010 | 1010                | State | 2 |                   | 0*[U_][X'][Y][V']0*                                      |                     | • X = 10       |    |                  |
| 11 <b>0</b> 10 | 1010                | State | 0 |                   |                                                          | ]                   | • V' = 10      |    |                  |
| 11 <b>1</b> 10 | 1010                | State | 1 |                   | 0*[U'][Y'][ <sub>r</sub> Y][V']0*                        | •                   | • U' = 111     |    |                  |
| 111 <b>1</b> 0 | 1010                | State | 2 |                   |                                                          | ]  •                | • Y' = 11      |    |                  |
| 1111 <b>0</b>  | 1010                | State | 0 |                   |                                                          |                     | 7 – 11         |    |                  |
| 1111 <b>1</b>  | 1010                | State | 1 |                   | 0*[U'][Z][Z][V'' <sub>s</sub> ]0*                        |                     | 2 - 11         |    |                  |
| 111111         | 1010                | State | 2 |                   | /                                                        | ]                   | v = 110        |    |                  |
| 111111         | 1 <b>0</b> 10       | State | 0 |                   |                                                          |                     | • Y = 10       |    |                  |
| 111111         | 1 <mark>1</mark> 10 | State | 1 |                   |                                                          |                     |                |    |                  |
| 11111          | 1110                | State | 2 | •                 | The following holds                                      | :                   |                |    |                  |
| 11111          | 1110                | State | 0 |                   | – 0*[U'][Z][Z][V''s                                      | $0^* = 0^*[U][$     | X][X][X][Vs]0* |    |                  |
| 111111         | 111 <b>1</b>        | State | 1 |                   | [1111111110                                              | )] [11 <sup>-</sup> | 11111110]      |    |                  |
| 11111          | 11110               | State | 2 |                   |                                                          |                     |                |    |                  |

# **Alternating Christmas Trees**

• The machine transforms the tape much like a normal Christmas tree, however, it takes two sweeps across the tape rather than one to complete one cycle

| Christmas Trees        | Alternating Christmas Trees |
|------------------------|-----------------------------|
| 0*[U][X][X][X][V]0*    | 0*[U][X][X][X][V]0*         |
| 0*[U'][Y][Y][Y][V']0*  | 0*[U'][Y][Y][Y][V']0*       |
| 0*[U'][Z][Z][Z][V'']0* | 0*[U'][Z][Z][V'']0*         |
| D*[U][X][X][X][X][V]0* | 0*[U"][M][M][V""]0*         |
|                        | 0*[U''][N][N][N][V'''']0*   |
|                        |                             |

# **Busy Beaver Non-Halters**

|                        | n = 3 |          | n = 4 |          | n = 5   |          |
|------------------------|-------|----------|-------|----------|---------|----------|
| backTrack              | 817   | 82.1106% | 47102 | 85.1538% | 3842187 | 87.1350% |
| subsetLoop             | 17    | 1.7085%  | 749   | 1.3541%  | 38761   | 0.8790%  |
| simpleLoop             | 159   | 15.9799% | 7243  | 13.0943% | 508156  | 11.5242% |
| christmasTree          | 2     | 0.2010%  | 198   | 0.3580%  | 18012   | 0.4085%  |
| alternateChristmasTree | 0     | 0.0000%  | 23    | 0.0416%  | 2818    | 0.0639%  |
| holdout                | 0     | 0.0000%  | 5     | 0.0090%  | 2623    | 0.0595%  |
| total                  | 995   |          | 55314 |          | 4409466 |          |

\*Note: Machines are classified according to the first routine which tests positive. The detection routines are applied in succession from top to bottom for each individual machine.

### **B4 Holdouts**

- Two of the holdouts of the B4 exhibited the one other behavior specified by Brady but not yet implemented as a detection routine for this project
- These machines mimic binary counters by altering the tape in such a way that it progressively counts in binary format



B4-counter1



B4-counter2

|                     | B4-Cou     | nter1                | Execut  | ion                 |
|---------------------|------------|----------------------|---------|---------------------|
| 0                   | State 0    | 10001                | State 0 |                     |
| 1                   | State 1    | /100 <b>0</b> 1      | State 1 |                     |
| 10                  | State 2    | / 10 <b>0</b> 01     | State 1 |                     |
| 10 <b>0</b>         | State 3    | / 10001              | State 1 |                     |
| 101                 | State 0    | / <b>1</b> 0001      | State 1 |                     |
| 101                 | State 1    | 1 <b>0</b> 001       | State 2 |                     |
| <b>1</b> 01         | State 1    | 10 <b>0</b> 01       | State 3 |                     |
| 101                 | State 2    | 10 <mark>101</mark>  | State O |                     |
| 10 <b>1</b>         | State 3    | 1 <b>0</b> 101       | State 1 | *Note: this machine |
| 10 <b>0</b>         | State 2    | <b>1</b> 0101        | State 1 | generates binary    |
| 100 <b>0</b>        | State 3    | 1 <b>0</b> 101       | State 2 | numbers that read   |
| 1001                | State 0    | 10 <b>1</b> 01       | State 3 | from right to left  |
| 10 <b>0</b> 1       | State 1    | 10001                | State 2 | rather than the     |
| 1 <b>0</b> 01       | State 1    | 10001                | State 3 |                     |
| <b>1</b> 001        | State 1    | 10 <mark>01</mark> 1 | State O | right               |
| 1 <b>0</b> 01       | State 2    | 10011                | State 1 |                     |
| 10 <b>0</b> 1       | State 3    | 1 <b>0</b> 011       | State 1 |                     |
| 10 <mark>1</mark> 1 | State 0    | <b>1</b> 0011        | State 1 |                     |
| 1011                | State 1    | 1 <b>0</b> 011       | State 2 |                     |
| <b>1</b> 011        | State 1    | 10011                | State 3 |                     |
| 1011                | State 2    | 10 <mark>1</mark> 11 | State O |                     |
| 10 <b>1</b> 1       | State 3    | 10111                | State 1 |                     |
| 10 <b>0</b> 1       | State 2    | <b>1</b> 0111        | State 1 |                     |
| 100 <b>1</b>        | State 3 /  | 10111                | State 2 |                     |
| 100 <b>0</b>        | State 2/   | 10 <b>1</b> 11       | State 3 |                     |
| 1000 <b>0</b>       | State $3'$ | 10 <b>0</b> 11       | State 2 |                     |

### **B4 Holdouts**

• Two of the holdouts are very similar to alternating christmas trees



| 0                             | State | 0 |
|-------------------------------|-------|---|
| 1                             | State | 1 |
| 10                            | State | 2 |
| 10 <b>0</b>                   | State | 3 |
| 1 <b>0</b> 0                  | State | 1 |
| <b>1</b> 00                   | State | 0 |
| <b>0</b> 100                  | State | 0 |
| <b>1</b> 100                  | State | 1 |
| 1 <b>1</b> 00                 | State | 2 |
| 11 <b>0</b> 0                 | State | 1 |
| 1 <b>1</b> 00                 | State | 0 |
| <b>1</b> 10 <mark>0</mark>    | State | 0 |
| <b>0</b> 1100                 | State | 0 |
| <b>1</b> 110 <mark>0</mark>   | State | 1 |
| 1 <b>1</b> 10 <mark>0</mark>  | State | 2 |
| 11 <b>1</b> 00                | State | 1 |
| 111 <b>0</b> 0                | State | 2 |
| 1110 <mark>0</mark>           | State | 3 |
| 111 <b>0</b> 0                | State | 1 |
| 11 <b>1</b> 00                | State | 0 |
| 1 <b>1</b> 10 <mark>0</mark>  | State | 0 |
| <b>1</b> 110 <mark>0</mark>   | State | 0 |
| <b>0</b> 1110 <mark>0</mark>  | State | 0 |
| <b>1</b> 1110 <mark>0</mark>  | State | 1 |
| 1 <b>1</b> 110 <mark>0</mark> | State | 2 |
| 11 <b>1</b> 10 <mark>0</mark> | State | 1 |
| 111 <b>1</b> 00               | State | 2 |
| 1111 <b>0</b> 0               | State | 1 |

#### B4-uneven Alternate Christmas Tree1 Execution

- Recognizable alternating sweeping motion as seen in alternating Christmas trees
- Right boundary of intermediate sweep does not at least reach the right boundary of the previous major sweep
- Current implementation assumes that each sweep spans at least as far as the previous sweep
- Only minor modifications to the alternating Christmas tree routine should be necessary to account for this behavior

#### **B4 Holdouts**

• The final holdout escapes the Christmas tree detection routine because of unusual startup effects



| 0                               | State | 0 |
|---------------------------------|-------|---|
| 1                               | State | 1 |
| 10                              | State | 1 |
| 10 <b>0</b>                     | State | 2 |
| 1 <b>0</b> 0                    | State | 2 |
| <b>1</b> 00                     | State | 2 |
| <b>0</b> 100                    | State | 3 |
| <b>0</b> 0100                   | State | 0 |
| <b>1</b> 0100                   | State | 1 |
| 1 <b>0</b> 100                  | State | 1 |
| 10 <b>1</b> 00                  | State | 2 |
| 1 <b>0</b> 100                  | State | 3 |
| <b>1</b> 01 <mark>00</mark>     | State | 0 |
| <b>0</b> 10100                  | State | 0 |
| <b>1</b> 10100                  | State | 1 |
| 1 <b>1</b> 0100                 | State | 1 |
| 11 <b>0</b> 100                 | State | 1 |
| 110 <b>1</b> 00                 | State | 2 |
| 11 <b>0</b> 100                 | State | 3 |
| 1 <b>1</b> 0100                 | State | 0 |
| <b>1</b> 10100                  | State | 0 |
| <b>)</b> 1101 <mark>00</mark>   | State | 0 |
| <b>L</b> 1101 <mark>00</mark>   | State | 1 |
| L <b>1</b> 101 <mark>00</mark>  | State | 1 |
| L1 <b>1</b> 01 <mark>0</mark> 0 | State | 1 |
| L11 <b>0</b> 1 <mark>0</mark> 0 | State | 1 |
| L110 <b>1</b> 00                | State | 2 |

#### B4-startup Effects Christmas Tree1 Execution

- The Christmas tree detection routine runs the machine for a hundred transitions or so before looking for Christmas tree behavior to account for startup effects
- These transitions, however, are still observed to establish left and right boundaries for each sweep of the tape
- This machine creates a false right boundary during the startup phase
- Again, only minor modifications to the Christmas tree routine should be necessary to account for this behavior

# Future Work

- Counter detection routines
  - Brady goes into more detail regarding the behavior of Counters, specifying a grammar in the same format as the Christmas tree grammar
  - Also mentions Counter variations (unary, binary, base-3, etc.)
- Christmas tree variations
  - Account for startup effects shown in B4 holdout
  - Uneven alternating Christmas trees
  - Multi-sweep (3,4,5... sweeps) alternating Christmas trees (seen in several of the random B5 holdouts that I've looked at)
  - Several more