Conquering the Busy Beaver presented by Kyle Ross 4th December 2002

> Bram van Heuveln Boleshaw Szymanski Selmer Bringsjord Carlos Varela Owen Kellett Shailesh Kelkar Kyle Ross

Turing Machines

() -----

The Busy Beaver Problem

"Consider, for a fixed positive integer *n*, the class K_n of all the *n*-card [state] binary turing machines ... Let *M* be a Turing machine in this class K_n . Start *M*, with its card 1, on an all-0 tape. If *M* stops after a while, then *M* is termed a *valid entry* in the *BB-n* contest ... and its score $\sigma(M)$ is the number of 1's remaining on the tape at the time it stops ... [the set of σ -values] has a (unique) largest element which we denote by $\Sigma(n)$... It is practically trivial that this function $\Sigma(n)$ is not general recursive ... [but] it may be possible to determine the value of $\Sigma(n)$ for particular values of *n*."

-Lin & Rado "Computer Studies of Turing Machine Problems" Journal of the Association for Computing Machinery, Vol. 12, No. 2 (April, 1964), pp. 196-212

Variants of the Problem

- quadruple vs. quintuple
- standard position vs. arbitrary format output
- implicit vs. explicit halt machine

Turing Machine Formulations

Turing Machine Formulations

Turing Machine Formulations

B(5)-11

Previous Work on Quadruple

- *R*(*n*) quadruple, explicit, no restriction
 [nobody?]
- O(n) quadruple, implicit, no restriction
 Oberschelp et al.
- *P*(*n*) quadruple, explicit, standard
 Pereira et al.
- *B*(*n*) quadruple, implicit, standard
 - Boolos and Jeffrey

Known Results

About the Quadruple Formulation

- Turing's World & Greg's challenge
- less-productive than quintuple machines
- greater room for optimisations

The Search Space

- $|M(n)| = (4n+1)^{2n}$
 - 4 possible actions for each of *n* next states
 - 1 no-action transition to halt-state
 - 2*n* possible transitions
- for *B*(6)=(4(6)+1)²⁽⁶⁾=5.96 x 10¹⁶ machines
- not hopeless!

Inefficiency: Isomorphisms

B(5)-11

B(5)-11-isomorph

Inefficiency: Unused Transitions

non-halter

Features of Tree Normalisation

- complete & optimal search
- no loss of absolute numbers
- great speed-up over pure brute-force

Improvement from Normalisation

Tree Normalisation Improvement

Inefficiency: Empty Tape Machine

- machine reaches an empty tape after 1 or more shifts
- any machine that does not write 1 as its first action is such a machine

(Partial) Solution: Force First Write

(Partial) Solution: Force First Write

Inefficiency: Nonproductive Transitions

Inefficiency: Mirror Machines

B(5)-11

B(5)-11-mirror

- s:s transition
- s:s'-s':s transition

Improvement from First Move

Optimisations Improvement

Distributed Computing

- still a lot of work to do (particularly for n>6)
- C/C++ farmer / worker model
- SALSA actor / theatre model

C++ Farmer / Worker Distribution

Features of Farmer / Worker

- centralised view of problem
- dynamic search-space sub-division
- compatible with optimisations
- representation and partial machines

Future of the Problem

- ultimately will always remain non-computable
- always able to get candidates
- reduction to halting problem and limits of human analysis
- Kyle's prediction: nobody will get past B(8) for a *very* long time

RPI B(6) Champion*

* This machine is also the world champion (and probably the theoretical B(6) champion).

We Beat the Portuguese!

P(6)-41

We Have Records for O(6) & R(6)!

R(6)-71