Conquering the Busy Beaver presented by Kyle Ross $4^{\text {th }}$ December 2002

Bram van Heuveln
Boleshaw Szymanski Selmer Bringsjord Carlos Varela Owen Kellett
Shailesh Kelkar
Kyle Ross

Turing Machines

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Gregg's Challenge

Turing Machines

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Gregg's Challenge

Turing Machines

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Gregg's Challenge

Turing Machines

Gregg's Challenge

Turing Machines

Gregg's Challenge

Turing Machines

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
$$

Gregg's Challenge

The Busy Beaver Problem

"Consider, for a fixed positive integer n, the class K_{n} of all the n-card [state] binary turing machines ... Let M be a Turing machine in this class K_{n}. Start M, with its card 1 , on an all-0 tape. If M stops after a while, then M is termed a valid entry in the BB-n contest ... and its score $\sigma(M)$ is the number of 1 's remaining on the tape at the time it stops ... [the set of σ-values] has a (unique) largest element which we denote by $\Sigma(n)$... It is practically trivial that this function $\Sigma(n)$ is not general recursive ... [but] it may be possible to determine the value of $\Sigma(n)$ for particular values of n."
-Lin \& Rado "Computer Studies of Turing Machine Problems" Journal of the Association for Computing Machinery, Vol. 12, No. 2 (April, 1964), pp. 196-212

Variants of the Problem

- quadruple vs. quintuple
- standard position vs. arbitrary format output
- implicit vs. explicit halt machine

Turing Machine Formulations

quadruple formulation

Turing Machine Formulations

explicit halt

Turing Machine Formulations

Previous Work on Quadruple

- $R(n)$ - quadruple, explicit, no restriction - [nobody?]
- $O(n)$ - quadruple, implicit, no restriction
- Oberschelp et al.
- $P(n)$ - quadruple, explicit, standard
- Pereira et al.
- $B(n)$ - quadruple, implicit, standard
- Boolos and Jeffrey

Known Results

n	$\mathrm{R}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{P}(\mathrm{n})$	$\mathrm{B}(\mathrm{n})$
1	1	1	1	1
2	$>=2$	2	2	2
3	$>=4$	3	4	3
4	$>=8$	8	$>=7$	$>=5$
5	$>=16$	15	$>=16$	$>=11$
6	$>=71$	$>=70$	$>=41$	$>=25$
7			$>=164$	$>=164$
8			$>=384$	

About the Quadruple Formulation

- Turing's World \& Greg's challenge
- less-productive than quintuple machines
- greater room for optimisations

The Search Space

- $|M(n)|=(4 n+1)^{2 n}$
- 4 possible actions for each of n next states
- 1 no-action transition to halt-state
- $2 n$ possible transitions
- for $B(6)=(4(6)+1)^{2(6)}=5.96 \times 10^{16}$ machines
- not hopeless!

Inefficiency: Isomorphisms

$B(5)-11$

$B(5)$-11-isomorph

Inefficiency: Unused Transitions

$B(4)-5-u 1$

$B(4)-5-u 2$

Solution: Tree Normalisation

Solution: Tree Normalisation

Solution: Tree Normalisation

non-halter

Solution: Tree Normalisation

Solution: Tree Normalisation

non-halter

Features of Tree Normalisation

- complete \& optimal search
- no loss of absolute numbers
- great speed-up over pure brute-force

Improvement from Normalisation

Inefficiency: Empty Tape Machine

- machine reaches an empty tape after 1 or more shifts
- any machine that does not write 1 as its first action is such a machine

(Partial) Solution: Force First Write

non-halter
first-wnite-not 1

(Partial) Solution: Force First Write

Improvement from First Write Optimisations Improvement

Inefficiency: Nonproductive Transitions

Inefficiency: Mirror Machines

$B(5)-11$

B(5)-11-mirror

Solution: Force First Move

non-halter
first move not R
first write-not-1
s:s transition
$s: s^{\prime}-s^{\prime}: s$ transition

Solution: Force First Move

Solution: Force First Move

first move not R
first-wuite-not 1
sis transition
s:s'-s':s transition

Solution: Force First Move

low-productivity

Solution: Force First Move

Improvement from First Move

Distributed Computing

- still a lot of work to do (particularly for $n>6$)
- C/C++ farmer / worker model
- SALSA actor / theatre model

C++ Farmer / Worker Distribution

SALSA Actor Distribution

Features of Farmer / Worker

- centralised view of problem
- dynamic search-space sub-division
- compatible with optimisations
- representation and partial machines

Future of the Problem

- ultimately will always remain non-computable
- always able to get candidates
- reduction to halting problem and limits of human analysis
- Kyle's prediction: nobody will get past B(8) for a very long time

RPI B(6) Champion*

* This machine is also the world champion (and probably the theoretical $\mathrm{B}(6)$ champion).

We Beat the Portuguese!

$P(6)-41$

We Have Records for $O(6) \& R(6)$!

