
A New-Millenium Attack on the Busy Beaver Problem∗

Kyle Ross, Owen Kellett, Bram van Heuveln, Selmer Bringsjord
Rensselaer AI & Reasoning (RAIR) Lab

Department of Cognitive Science
Department of Computer Sciencee

Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA

{rossk2,kelleo,heuveb,selmer}@rpi.edu

draft 11.06.03 last updated by Owen

Abstract

Various computationally-based approaches to making
progress on Rado’s Σ function (the Turing-unsolvable
“Busy Beaver” Problem: BBP) have been taken:
brute force searches, genetic algorithms, heuristic be-
haviour analyses, etc. As a result, candidate BBP
champions have been reported with a high degree
of confidence for both the quintuple and quadruple
formulations of the problem. However, what these
previous research efforts lack is a definitive proof
which explicitly confirms that these candidate ma-
chines are in fact Busy Beavers. The present paper
proposes and explores the merits of combining tree-
normalization search techniques with specific non-
halt detection routines to explicity confirm BBP for
small values of n. The start of our planned multi-year
attack on BBP, this work establishes a foundation
for exploiting a form of distributed computation used
previously at our institution on the twin-prime prob-
lem and provides a fertile testbed for exploring both
“visual” reasoning and possible super-Turing compu-
tation.

1 The “Busy Beaver” Problem

Rado’s (1963) Σ (“Busy Beaver”) function has be-
come a classic focus of study in the theory of comput-
ing. Although certainly directly related to the halt-
ing problem (Church 1936), BBP poses an alterna-
tive formulation of the concept of non-computability
for Turing machines: given a fixed-size alphabet and
a limited number of internal states, create the most
“productive” Turing machine that halts when run on

∗We are indebted to Part of this research is being sup-
pored by the National Science Foundation (award # 0323324).

an empty (all-0) input tape; Σ(n) denotes the maxi-
mal productivity among all n-state Turing machines.

Lin and Rado (1964) define the problem:

Consider, for a fixed positive integer n, the class
Kn of all the n-card [state] binary [alphabet]
Turing machines . . . Let M be a Turing ma-
chine in this class Kn. Start M , with its card
1 [i.e. in the start state], on an all-0 tape. If
M stops after a while, then M is termed a valid
entry in the BB-n contest . . . and its score s(M)
is the number of 1’s remaining on the tape at
the time it stops . . . [the set of s-values] has
a (unique) largest element which we denote by
S(n) . . . It is practically trivial that this func-
tion S(n) is not general recursive [i.e. is non-
computable]. . . [but] it may be possible to de-
termine the value of S(n) for particular values
of n.

Lin and Rado also define a function σ(n) which is
closely related to Σ(n): given all valid entries in the
BB-n contest (i.e., machines that halt after one or
more steps), consider each machine in this set and let
σ(n) be the maximal number of shifts required for all
machines to halt.

In the Lin and Rado formulation of the problem,
methods for computing the problem are phrased in
very abstract terms. It is our starting suggestion that
Busy Beaver be viewed as a search-based optimiza-
tion problem. The search space for BB-n is the set of
all n-state Turing machines and an optimal machine
(i.e. the machine that the search aims to “find”) is a
machine which, upon halting, contains precisely Σ(n)
1’s on its tape. This terminology (viz., the problem
as a search) will be used throughout the remainder,
and viewing Busy Beaver as such will facilitate un-
derstanding of our discussion.

1

2 Turing Machine Formaliza-

tion

There are two distinct Turing machine transition for-
mulations: the quintuple (as defined by Turing) and
the quadruple.1

For us herein, a Turing machine M = (T, C) can
be defined defined as a two-way infinite tape, T , and
a finite state sequential control mechanism, C.

The former comprises a sequence of cells, or
squares, and a read-write head. For idiomatic pur-
poses, we term the square currently being scanned
by the read-write head the current square and the
symbol in this square the current symbol.

The read-write head can perform the following four
operations:

1. 0 (write a 0 onto the current square)

2. 1 (write a 1 onto the current square)

3. L (move one square left)

4. R (move one square right)

For our work, the latter is defined by the quintuple
C = (Q, Γ, δ, q0, F) where Q is a nonempty finite set
of states, Σ is a nonempty finite alphabet2, δ is a
mapping called the transition function, q0 ∈ Q is the
start state and F ⊆ Q is the set of final states (i.e.,
halting states).

δ is defined for quintuple transition Turing ma-
chines as a transition from the current state of C
and the current symbol on T to a new state of C, a
new symbol to be written on the current square, and
a move of the read-write head (either to the left or to
the right),3 that is, δ is a partial function

δ : Q× Γ→ Q× Γ× {L, R}

For quadruple transition machines we modify the
definition slightly: δ is defined similarly, except that
only a write or a move, but not both, is allowed for
any transition,4 that is, δ is a partial function

δ : Q× Γ→ Q× Γ ∪ {L, R}

1See (Révész 1983, Linz 1997) for a much more complete
discussion of Turing machines and formal languages.

2Most formal definitions of Turing machines make a distinc-
tion between the input alphabet and the working alphabet; for
our purposes, both are the set {0, 1}, so we omit the additional
parameter.

3Traditionally, when a transition is applied, the write is per-
formed, then the move of the read-write head, and, finally, the
transition to the new state of the finite state control mecha-
nism.

4Again, the action (i.e., either a write or a move) occurs
prior to the state-change of the finite state control machine.

It can be shown5 that for any quintuple Turing ma-
chine, M , there exists an equivalent quadruple Tur-
ing machine M ′; for the remainder of this paper, we
consider only quadruple transition machines.

The operation of a Turing machine is as follows,
assuming we have variables qcurrent representing the
current state of the finite control mechanism, C, and
rcurrent representing the current symbol on the tape,

T : while rcurrent 6∈ F and qcurrent×rcurrent
δ
→ qnew×

a for some qnew ∈ Q and some a ∈ Γ ∪ {L, R} (i.e.,
while δ is defined for the current state and the symbol
currently being scanned), perform the action defined
by a and set qcurrent ← qnew.

3 Variants of the Busy Beaver

Problem

There are a large number of variants of the Busy
Beaver problem. For the purposes of this paper, only
those based on a binary alphabet (viz., {0, 1}) will
be considered. Eight different formulations of the
problem can be created through combinations of the
values of three variables: transition type (discussed
supra), halting type, and output restriction type.

3.1 Halting Type

In the theoretical formulations of Turing machines
(both quadruple and quintuple) described in sect. 2,
transitions to q ∈ F (final states) are exactly as nor-
mal transitions: given a current state and current
symbol, such a transition involves either a write or
a move (but not both) in the quadruple formulation
and both a write and a move in the quintuple formu-
lation. This describes the explicit halting machine.

The alternative is implicit halting in which a tran-
sition to a halt state involves neither a write nor a
move. In many discussions, this is phrased without a
halt state: the machine halts when it is in a state q
reading symbol r and δ is undefined for q× r. In this
paper, a halt state is used to provide uniformity6 be-
tween explicit and implicit formulations and because
a halting state simplifies discussion without any se-
mantic alteration to the Turing machines.

It is important to note, for the purposes of study-
ing the Busy Beaver problem, that an n-state Turing
machine has n states plus exactly one halt state (i.e.
|F | = 1 and the halt state is not counted as one of
the machine’s states); we shall call this state H . The

5See (Ross 2003) for a constructive proof.
6The benefit of this uniformity is that generic discussion—

discussion applicable to both implicit and explicit machines—
can be made regarding the problem at hand.

2

Turing machines considered in our research have the
restriction that there can be no outgoing transitions
from the halt state—when the machine is in the halt
state, it cannot be run any further.7

3.2 Output Restriction Type

The final variable that gives rise to variants of the
problem is one placed only on machines that have
halted—an additional “candidacy requirement.” In
the standard position formulation, a machine must
be halted with its read head scanning the leftmost of
a contiguous series of 1’s on the tape and, except for
this contiguous series, there must be no other 1’s on
the tape.8 In the non-restricted formulation (which
this paper calls the “non-standard” formulation), any
machine that has halted is a candidate for the Busy
Beaver contest; this is, of course, a proper superset
of the candidates that would be considered under the
standard position requirement.

4 Taxonomy of the Busy

Beaver Functions

Most previous work on the Busy Beaver problem
has dealt with some variant of the binary alphabet
quintuple formulation. There has, however, been
some previous study of several of the quadruple vari-
ants. The following summary of that work and the
terminology referring thereto is adapted from (van
Heuveln et al n.d.).

• Boolos and Jeffrey (1989) have studied the quadru-
ple, implicit halt, standard position formulation. It
was in part this work that inspired the present re-
search. Busy Beaver maximal productivity numbers
for this formulation will be denoted B(n) and maxi-
mal shift numbers will be denoted b(n).

• A Portuguese group (Pereira, Machado, Costa &
Cardoso n.d.) used a combination of genetic al-
gorithms and hill-climbing techniques to study the
quadruple, explicit halt, standard position variant
of the problem. We call this function P (n) and the
associated shift function p(n).

• A German group (Oberschelp, et al.) used proba-
bilistic reasoning

to research the quadruple, implicit halt, non-
standard formulation. We define O(n) and o(n) to

7It may seem intuitive that there cannot be outgoing tran-
sitions from the final state, but many theoretical formulations
allow leaving the accept or reject states.

8This is the method by which natural numbers are con-
ventionally represented as input to and output from binary
alphabet Turing machines.

represent the productivity and shift champions, re-
spectively, for this variant.

• The quadruple analogue to Rado’s original problem
(quadruple, explicit halt, non-standard) has not, to
our knowledge, been studied previously, but we use
R(n) (for Rado) to denote the productivity champi-
ons for this version and r(n) for the shift champions.

5 Difficulty of the Problem

Calculating Busy Beaver numbers is very difficult.
For n = 1, the calculation is trivial, but not so for
even n = 2. The following discussion is adapted from
that in (van Heuveln et al n.d.). The difficulty of
computing values for Σ(n) derives from 3 sources:
the non-computability of σ(n), the enormous search
space, and the non-computability of the halting prob-
lem.

First, an n-state Turing machine that halts (such
a machine will henceforth be called an “halter”) may
take an inordinate number of steps to do so, as will be
seen. Notice that for any value of n if σ(n) were to be
known, Σ(n) would be computable via the following
method: run each machine M for σ(n) transitions. If
the machine has not halted, it is known to be a non-
halter and can be discarded. For the machines that
have halted, find the maximal number of 1’s on any
of their tapes; this number is Σ(n). For large values
of n, if σ(n) were known, it would still take a great
deal of computational power to find Σ(n) since σ(n)
grows quickly enough to itself be non-computable.

The second source of difficulty is the enormous size
of the search space. For explicit formulations (viz.
P (n) and R(n)), |M(n)| = (4n + 4)2n.9

Third, and most menacing, in order to evaluate a
Turing machine (i.e., to determine if a machine is a
valid BB-n candidate), one must find out whether
the machine halts or not; this is precisely the halt-
ing problem described in (Church 1936)—a problem
which is provably non-computable. For small values
of n, halt-detection heuristics may be used to classify
machines as halters or non-halters, and for slightly
larger values of n, careful examination of the ma-
chines can determine halting behaviour.

9The derivation of this formula is as follows: there are a
total of 2n possible transitions in an n-state binary machine
(i.e. 1 per state per read symbol); for each of these, there are
4 possible actions times n+ 1 next states (including n internal
states and the halt state). For implicit formulations (viz. B(n)
and O(n)), |M(n)| = (4n + 1)2n. This formula is like that for
the explicit formulations except that there is only one possible
halt transition rather than four.

3

6 Conjectures

Maybe insert the table of previously-known results
here(?)

I’m not sure how far out on the limb we’re willing
to go; I’ll save this section until after we’ve discussed
and agreed on this matter.

7 Optimization Methodologies

If we were to attempt the problem through a
näıve brute-force approach, it would be entirely im-

practical to compute even small Busy Beaver values.
For example (based on the formula from sect. 5): for
B(6) there would be (4(6) + 1)2(6) ≃ 5.96 × 1016

machines to consider. The problem can, however,
be partially simplified through a group of reductions
that decrease the redundancy of the search space.
The following discussion looks at the types of redun-
dancy and presents optimizations to eliminate them
from the search space being considered.

7.1 Tree Normalisation

7.1.1 Isomorphic Machines

halt

start 0

1

1
0:1

0:R

2
1:R

3
0:1

4

1:R

0:1

1:L

0:1

1:R

Figure 1: B(5) Champion

halt

start 0

1

1
0:1

0:R

3
1:R

2
0:1

4

1:R

0:1

1:L

0:1

1:R

Figure 2: B(5) Champion Isomorph

The Turing machines illustrated in fig. 1 and fig. 2
are identical to one another except that states 2 and
3 have been interchanged. Clearly, the machines are
functionally equivalent. For any n-state Turing ma-
chine there are n! isomorphic machines (since there
are n! permutations of the n state-numbers), but we
need to consider only one of these since their be-
haviour will be identical.

7.1.2 Unused-State Machines

halt

start

0
1

0:1 2
1:L

0:1

1:R
0:1

3

1:L

1

0:L

4

0:1

5

0:1

Figure 3: A 6-state Turing Machine with 2 unused
States

The Turing machine illustrated in fig. 3 is a 6-state
machine but only four of the states are reachable (i.e.
because there are no transitions terminating in either
state 4 or state 5). For every n-state machine that has
1 unreachable state, there is an equivalent machine
with n − 1 states, so no such machines need to be
considered for our search to be exhaustive.

7.1.3 Tree Normalisation Schema

S

Figure 4: Oth Level (Root) of the Normalised Tree

Partially- and Fully-Defined Machines For
any Turing machine, it is either the case that there ex-
ists one or more transitions to the halt state or there
does not exist such a transition. A partially defined
machine is a machine that does not have a halt tran-
sition (i.e., a transition wherein the halt state is the
“next state” portion of the transition); a fully defined

4

S

S S S S S S S S S0:0 0:1 0:L 0:R

0:0 0:1 0:L 0:R

halt

0

Figure 5: 0th and 1st Levels of the Normalised Tree

S 0:1

S S S S S S S S S0:1 1:0 0:1 1:1 0:1 1:L 0:1 1:R 0:1

1:0

0:1

1:1

0:1

1:L

0:1

1:R

0:1

halt

1

Figure 6: Part of the 2nd Level of the Normalised
Tree

machine is a machine that does have a transition to
its halt state. The importance of the distinction be-
tween partially- and fully-defined machines will be-
come evident during the following discussion of the
tree normalisation method.

Tree Normalisation Schema One solution to the
problems posed by isomorphs and unused-state ma-
chines is a generative method known as tree normal-
isation. The root level of the tree (fig. 4) is a single-
state machine with no transitions defined; this, of
course, is a partially-defined machine.

To continue generating the tree, choose an unex-
panded internal node representing a normalisation
candidate. Such a machine is characterised by the fol-
lowing behaviour: when run on an all-0 input tape,10

the machine halts after one or more transitions and
is not in the halt state at such time. In order to de-
termine if a machine is a normalisation candidate or
not, we must determine whether the machine halts
or not. The heuristic mechanisms that we employ for
non-halt detection are described in sect. 8.

Assume that we have a Turing machine M which
is intended to be a candidate in the BB-n contest;
further assume that M has been determined to be
a normalisation candidate via the method previously
discussed, that it currently has m states, and that
these states are labelled M0, M1, . . . Mm−1. Run the
machine until it halts in state Ci reading symbol
Ri. Let s = min(m + 1, n). M will have precisely
4s + 1 children if it is an implicit halt machine or
4s + 4 children if it is an explicit halt machine. For

10We will assume henceforth that machines being run start
with a blank input tape so as to avoid redundantly declaring
that this is the case.

each state Mi (where i ∈ {0, 1, 2, . . .m}) of the ma-
chine create a child of M with the additional tran-
sition Ci × Ri

δ
→ Mi × 0, a child with the tran-

sition Ci × Ri
δ
→ M1 × 1, a child with the tran-

sition Ci × Ri
δ
→ Mi × L, and a child with the

transition Ci × Ri
δ
→ Mi × R. This defines a to-

tal of 4m children. If m < n then create 4 chil-
dren of M with an additional state Mm. For each
of these children distribute one of the following tran-

sitions: Ci × Ri
δ
→ Mm × 0, Ci × Ri

δ
→ Mm × 1,

Ci × Ri
δ
→ Mm × L, Ci × Ri

δ
→ Mm × R. We

have now defined 4s children. For implicit halt ma-
chines, create a single child with the additional tran-
sition from Ci reading Ri and terminating in the halt
state. For explicit halt machines, create 4 children
and distribute one of the following transitions to each

Ci×Ri
δ
→ H×0, Ci×Ri

δ
→ H×1, Ci×Ri

δ
→ H×L,

Ci × Ri
δ
→ H × R. We have now enumerated either

4s+1 children of M if M is an implicit halt machine
or 4s + 4 children of M if M is an explicit halt ma-
chine. 2 levels of this normalised tree generation are
shown in fig. 5 and fig. 6.

It can be shown that the tree normalisation method
eliminates both of the problems discussed here (viz.,
isomorphs and unused-state machines) and that it is
complete and optimal—the BB-n productivity num-
bers created by considering only the machines gener-
ated by the tree normalisation method will be equally
productive as would be the maximal productivity ma-
chine found by exhausting the search space; proofs of
these assertions can be found in (Ross 2003).

7.1.4 Empty Tape Machines

S

S S S0:1

0:1

halt

0

Figure 7: Normalisation Tree (Implicit) Pruned
Based on Forcing First Write

Consider a Turing machine M that, after one or
more transitions, again has a blank (all-0) tape. Let
Ci be the state that M is in at after the last such
shift is made. Create a machine M ′ that is identical

5

to M but starts in state Ci. Clearly, M ′ will behave
exactly as M does. Since M ′ has a different first
transition than does M , M ′ is non-isomorphic to M
and, based on the completeness of normalisation, will
be generated (possibly by proxy through a machine
representing its behaviour) at some time during the
generation of the tree. Hence, empty tape machines
need not be considered.

Notice that machines whose first action (i.e. the
action taken from the start state when reading a 0)
is anything other than “write a 1 on the tape” is an
empty tape machine.

To partially solve this problem, we simply define

the first action taken by any machine to be “write a
1”. This reduces the branching factor between the
0th and 1st levels of the tree from 8 to 2,11 as shown
in fig. 7; compare this against fig. 5.

We also implement the generalised solution to the
problem. To do this, we, subsequent to the first tran-
sition, simply track how many non-blank symbols are
on the tape; if this number ever reaches 0, then we
discard the machine and its successors in the tree as
blank-tape machines. Since the first move has been
defined to be “write a 1”, we are assured that all
blank-tape machines have been eliminated from con-
sideration.

7.2 Nonproductive Transitions

7.2.1 Simple Nonproductive Transitions

We term any transition of the form i × s
δ
→ j × s

a simple nonproductive transition. Such a transition
reads a symbol s and then writes the same symbol
back onto the tape.

It can be shown that for every machine with a
simple nonproductive transition generated by the
tree normalisation schema, there exists a function-
ally equivalent machine (that is also generated dur-
ing construction of the tree) which has no such tran-
sition.12

7.2.2 Complex Nonproductive Transitions

Another type of nonproductive transition takes the 2-

part form of i× s
δ
→ j× s′ followed by j× s′

δ
→ k× s

—effectively, the first transition replaces the symbol
s with the symbol s′ and the second transition re-
verses this action. We term such transitions complex

nonproductive transitions.

11We ignore the fully-defined (halting) machines in this
count since these will have no children and, thus, have triv-
ial sub-trees.

12A proof that this is the case can be found in (Ross 2003).

As with simple nonproductive transitions, it can
be shown that a machine’s complex nonproductive
transitions can be eliminated from our search without
affecting our results.13

7.3 Mirror Machines

halt

start 0

1

1
0:1

0:L

2
1:L

3
0:1

4

1:L

0:1

1:R

0:1

1:L

Figure 8: B(5) Champion Mirror

Consider an arbitrary Turing machine M . Replace
every left move in M with a right move and every
right move with a left move; call this new machine
M ′. A moment’s thought will reveal that M ′ be-
haviour is not isomorphic to M ’s but that their pro-
ductivities are equal and, were we to watch them op-
erate in parallel, the behaviour of M ′ would be pre-
cisely as if we were watching M operate via a mirror.
TWo such machines are shown in fig. 1 and fig. 8.
Hence, there is no need to consider both M and M ′

since their behaviour (both in terms of shifts and pro-
ductivity) is equal—M is a maximal productivity ma-
chine for a BB-n contest if and only if M ′ is; thus it
will suffice to consider only one of the two.

We can eliminate mirror machines from considera-
tion if we require that the first move made by any ma-
chine during its operation be to the right. This leaves
us with the three machines shown in fig. 9 and it is
with the substantially pruned tree shown in this di-
agram that searches for Busy Beaver numbers ought
to be started.

8 Non Halt Detection

Clearly the greatest barrier in calculating the value of
the Busy Beaver function for a particular value of n
using this approach is the determination of whether

13It can be shown that for every machine with a complex
nonproductive transition there exists an equivalent machine
with neither simple nor complex nonproductive transitions
which will be generated during normalisation.

6

S

S S S

0:1

1:R

0:1

1:R

0:1

1:R

Figure 9: The 3 Start Machines

a machine halts. Despite the existance of the halting
problem, as stated in sect. 5, specific non-halt behav-
iors can be used to classify a subset of machines as
non-halters.

The following adapts elements of discussions in
both (Machlin & Stout 1990) and (Brady 1983). We
use a modified notion from the one found in (Machlin
& Stout 1990) to represent Turing machines and their
state at particular points in time: M and M c are used
to represent a Turing machine and its corresponding
mirror machine (see sect. 7.3) respectively. A word

or tape component is defined as an arbitrary length
continuous sequence of characters on the tape and is
represented by [X]14. If a machine is in state s, it is
represented on the tape as a subscript to indicate its
location: [sX] represents a machine in state s reading
the left most symbol of X ; [Xs] represents a machine
in state s reading the right most symbol of X ; s[X]
represents a machine in state s reading the symbol
directly to the left of the leftmost symbol of X ; and
likewise [X]s represents a machine in state s read-
ing the symbol directly to the right of the rightmost
symbol of X . 0∗ represents an infinite sequence of 0’s
and [X]i represents a sequence of i X ’s concatentated
together.

8.1 Back Tracking

The objective of the backtracking non-halt detection
algorithm is to prove that a machine can never reach
a set of conditions in which it does, or could poten-
tially halt. Given the particular definition of a Turing
machine used in the Busy Beaver problem (n-states
defined on a binary alphabet), there are exactly 2n
possible {state, symbol} pairs for which a transition
can possibly be defined. In addition, the only possi-

14any symbol can be used to replace X in this word and
naturally the same holds for any other mentioned component
of the machine

start 0

halt
1

1
0:1

2

1:R 4

0:L

3
0:R

1:L

1:L

0:R

1:0

5

0:R

1:L

0:L

Figure 10: Back Tracking example

ble way in which a machine can halt is if it reaches
a set of conditions (represented as a {state, symbol}
pair) for which the transition is either a transition
to the halt state, or in the case of partially defined
machines, does not exist at all.15 The backtracking
algorithm, therefore, iterates through every {state,
symbol} pair which has one of these two properties
and “backtracks” to see if it is possible to reach these
conditions.

8.1.1 Back Tracking Example

Consider the machine in fig. 10. Given the synopsis of
the backtracking algorithm stated above, we imme-
diately turn our attention to those {state, symbol}
pairs for which there is either a transition to the halt
state defined or no transition at all. This particu-
lar machine is fully defined, so there are therefore
no pairs for which there is no transition. There is
one transition to the halt state however, (in state 0,
reading a 1) and therefore our test set of conditions
contains only one pair, namely {0, 1}

A simple visual analysis of this machine induces
the realization that if the machine is to halt, at some
point during execution, the following must hold:

• the machine must be in state 3

• the machine must be reading a 1 at the read head

• a 1 must be to the direct left of the read head on
the tape

• we combine these three conditions into a single
representation of the tape at this time: 113

16

15In the case of partially defined machines, if a transition
does not exist for a particular {state, symbol} pair, a child
machine could easily be created with a transition to the halt
state defined on that pair

16From herein, we will represent partial tape configurations
in this format. Namely, the contents of the tape is some se-
quence of 1’s and 0’s, and the current state is represented as a
subscript at the position of the current read head on the tape

7

This is so because these conditions qualify as the
only conditions which will induce a transition into
state 0, reading a 1 on the tape. We therefore have
“backtracked” to the pair {3, 1}. Applying the same
procedure to this pair as we applied to {0, 1} above,
we establish the new state: 021, which the machine
must enter at some point during execution.

At this point, however, we must undergo an ad-
ditional step to confirm whether or not these con-
ditions will in fact lead to the halt state. Running
the machine for one step on this partial tape config-
uration yields yet another partial tape configuration:
013. This configuration, however, does not match
the partial configuration 113 from which we originally
backtracked. 013 is the only tape configuration which
will induce a transition into state 3 reading a 1. How-
ever, it does not produce the correct tape configura-
tion necessary to continue on to the halt state. The
machine, therefore, can never reach the halt state and
is a proven non-halter.

8.1.2 Back Tracking Formalization

Now that we have seen how the backtracking algo-
rithm works in practice, we can define the concrete
algorithm implemented in our program:

foreach {state, symbol} pair a in the set of pairs as
specified in sect. 8.1, do the following:

1. Construct a local tape configuration x
which must exist in order for the machine
to perform the transition defined for a

2. Execute (3) substituting a for b and x for y

3. Let b be a {state, symbol} pair parameter
and y be a local tape configuration param-
eter

foreach {state, symbol} pair c for which
there is a transition defined that termi-
nates in the state of b, do the following:

Construct a local tape configuration
z such that
a) the transition defined for c will
be performed on this tape, and
b) after the transition is per-
formed, the resulting local tape
matches y

if such a tape cannot possibly be cre-
ated, return false

else Execute (3) substituting c for b
and z for y

if every {state, symbol} pair in the above set pro-
duces a false return value when executing (3),

the machine cannot possibly halt and is there-
fore classified as a non-halter.

else the proof fails and the results are inconclusive.

Now as Machlin and Stout so gracefully put it in
(Machlin & Stout 1990): “While backtracking can
be useful, it cannot be guaranteed to always stop
since otherwise it would supply a solution to the halt-
ing problem.” As a result of this problem, we are
forced to specify a step limit pertaining to how far
the procedure is allowed to “backtrack.” If this limit
is reached, the results are also inconclusive.

8.2 Subset Loops

The subset loop detection heuristic is perhaps the
simplest of the non-halt routines because it requires
absolutely no knowledge of the input tape or ex-
ecution of the machine. A representation of the
state/transition diagram is all that is necessary. For-
mally, a machine can be classified as a subset loop if
all of the following hold:

• There is a set of states s such that for each state
in s, a transition for each symbol in the alphabet
(in our case just the binary alphabet {0,1}) is
defined.

• Every transition defined from a state in s termi-
nates in a state in s.

• At some point during execution, the machine en-
ters one of the states in s.

This definition is very intuitive and it is easy to see
that setting s = {1, 2, 3, 4, 5} in fig. 11 satisfies the
first two conditions. The third condition, however,
on the surface appears to require execution of the
machine to confirm. This is not the case:

Recall from sect. 7.1.3 our tree normalization
schema. Because of the mechanisms employed with
this approach, for every machine generated by our
solution, all defined transitions are guaranteed to be
used at some point during execution. As a result, if
a set s such as the one above exists, at some point
during execution each transition defined from a state
in s is guaranteed to be used. The third condition,
therefore, trivially follows from this fact. In the in-
terests of preventing redundancy, refer to sect. 7.1.3
for additional clarification.

8.3 Simple Loops

Generally speaking, a Turing machine that can be
classified as a simple loop moves the read head in

8

start 0

halt1

1

0:1

2
1:R

4

0:L

3
0:R

1:L

1:R

0:R

1:L

5

0:R

1:L

0:L

Figure 11: Subset Loop machine

a generally leftward or generally rightward direction
in some infinite, repeatable fashion. More formally,
a Turing machine M is classified as a simple loop if
it, or its corresponding mirror machine M c has the
following properties:

1. At some point a during execution, the following
tape configuration is reached: 0∗[C][Xs][Y]0∗.

2. One of the following properties holds:

• The same tape configuration is reached at
some later point.

• The following tape configuration is reached
at some later point b: 0∗[C][V][Xs][Y]0∗

and Between points a and b, the read head
never moves past the left edge of the initial
X (which would incidentally be the same
position as the left edge of the resulting V .

The first case is quite simple to grasp. If the tape,
read head, and current state are all identical at two
different points during execution, it is an obvious in-
finite loop and will never halt. The second case is
similarly intuitive. Consider the final condition which
states that the read head may never move past the
left edge of the initial X . Because of this, it is clear
that the machine will iteratively generate additional
V elements ad infinitum.

8.4 Christmas Trees

“Christmas Tree” machines, studied rigorously by
both Brady and Machlin and Stout in (Brady 1983)
and (Machlin & Stout 1990) respectively, are classi-
fied as non-halters due to a repeatable back and forth
sweeping motion which they exhibit on the tape. Ob-
servably, the pattern of the most basic form of Christ-
mas Trees is quite easy to recognize. The machine
establishes two end components on the tape and one
middle component. As the read head sweeps back
and forth across the tape, additional copies of the
middle component are inserted while maintaining the

 1110 State 2
 1110 State 3
 1110 State 0
 1010 State 3
 1010 State 3
01010 State 0
11010 State 1
11010 State 2
11010 State 0
11110 State 1
11110 State 2
11110 State 0
11111 State 1
111110 State 2

= 0*[U][Vs]0*

= 0*[U][X][Vs]0*

Figure 12: Christmas Tree execution

integrity of the end components at the end of each
sweep.

Consider the partial execution of a 4-state Christ-
mas tree machine denoted in fig. 12.17 This illus-
tration represents the state of the tape between two
successive right extremum in the machine’s back and
forth sweeping pattern. Clearly, at the first ex-
tremum point, the tape contains two end compo-
nents (respectively labeled U and V); after one com-
plete sweep, an additional X component is generated
while the original U and V components remain in-
tact. Also, the machine is in the same state (2) at
both points. Examination of additional successive
sweeps yields the finding that this pattern continues
to hold. Extraction of this phenomenon alone, how-
ever, does not constitute a proof of non-haltingness,
it only presents the possibility. Further investigation
is required:

8.4.1 Christmas Tree Behavior

Establishing the above behavior satisfies the first step
towards “Christmas Tree” detection. Let us now con-
sider the same machine referenced above except at a
later point during its execution in fig. 13. At this
point we see that the machine has introduced three
X components capped by the U and V components
respectively on each end. As the read head sweeps
across the tape in the leftward direction, it methodi-
cally transforms each X component into identical Y
components, entering the next X component in the

17Each line of this figure represents the tape contents as well
as the current state of the machine. The tape is denoted in
abbreviated form, under the assumption that the remainder
of the tape to the left and to the right consists of infinite se-
quences of 0’s. The character displayed in bold indicates the
position of the current read head.

9

 1111111110 State 2
 1111111110 State 3
 1111111110 State 0
 1111111010 State 3
 1111111010 State 3
 1111111010 State 0
 1111101010 State 3
 1111101010 State 3
 1111101010 State 0
 1110101010 State 3
 1110101010 State 3
 1110101010 State 0
 1010101010 State 3
 1010101010 State 3
01010101010 State 0
11010101010 State 1
11010101010 State 2
11010101010 State 0
11110101010 State 1
11110101010 State 2
11110101010 State 0
11111101010 State 1
11111101010 State 2
11111101010 State 0
11111111010 State 1
11111111010 State 2
11111111010 State 0
11111111110 State 1
11111111110 State 2
11111111110 State 0
11111111111 State 1
111111111110 State 2

= 0*[U][X][X][X][Vs]0*

= 0*[U][X][X][Xq][V’]0*

= 0*[U][X][Xq][Y][V’]0*

= 0*[U][Xq][Y][Y][V’]0*

= 0*[Uq][Y][Y][Y][V’]0*

= 0*[U’][rY][Y][Y][V’]0*

= 0*[U’][Z][rY][Y][V’]0*

= 0*[U’][Z][Z][rY][V’]0*

= 0*[U’][Z][Z][Z][rV’]0*

= 0*[U’][Z][Z][Z][V’’s]0*

Figure 13: Christmas Tree execution2

same state q each time. Additional X components
inserted in the middle, therefore, would be transpar-
ently passed over and have no effect on the general
behavior of the machine. The same properties hold as
the machine sweeps back across the tape transform-
ing each Y component into a Z component, while
maintaining the same state of the machine r as it
enters each successive Y component.

At the completion of this sweep, however, we
find ourselves in a somewhat useless state of
0∗[U ′][Z][Z][Z][V ′′

s]0∗. We have confirmed that ad-
ditional X components will generate the same, one
sweep pattern; however, this pattern leaves us with
all of the X components translated into Z compo-
nents and two alternate caps on each end. It turns
out that the key to the “Christmas Tree” behavior is
the make-up of the U ′ and V ′′ components after such
a sweep as the one shown in fig. 13. At the comple-
tion of the sweep, the U ′ component must be made
up of the original U as well as an auxiliary Z1 com-
ponent and the V ′′ component must be made up of
an auxiliary Z2 component as well as the original V .
In addition, [Z1][Z][Z][Z][Z2] = [X][X][X][X] must
hold.

8.4.2 Christmas Tree Formalization

Considering the above behaviors, we are now ready
to outline the complete requirements for a machine
to be classified as a “Christmas Tree” non-halter as
specified by Machlin and Stout in (Machlin & Stout
1990).

Formally, a Turing Machine M is a Christmas

tree if either M or Mc satisfy the following con-
ditions for some nonzero state s:

1. There are nonempty words U , V , and X

such that the tape configuration at some
time is 0∗[U][Vs]0

∗, and at some later time
is 0∗[U][X][Vs]0

∗.

2. The following conversions hold, where X,
X ′, Y , Y ′, Z, V , V ′, V ′′, U , and U ′ are
nonempty words and q and r are nonzero
states (the symbol ⇒ means that M trans-
forms the left-hand side into the right-
hand side after some number of steps):

• [X][Vs]0
∗ ⇒q [X ′][V ′]0∗

• [Xq][X
′] ⇒q [X ′][Y]

• 0∗[Uq][X
′] ⇒ 0∗[U ′][Y ′]r

• [Y ′][rY] ⇒ [Z][Y ′]r

• [Y ′][rV
′] ⇒ [Z][V ′′

s]

3. [U ′][Z]i[V ′′] = [U][X]i+1[V] for all i ≥ 1.

Note the addition of the X ′ and Y ′ components.
While they are often identical to the Y and Z com-
ponents respectively, they allow for a more robust

10

 Single-Sweep

0*[U][X][X][X][Vs]0*

0*[U’][rY][Y][Y][V]0*

0*[U’][Z][Z][Z][V’’s]0*

0*[U][X][X][X][X][Vs]0*

 equivalent to

 Double-Sweep

0*[U][X][X][X][Vs]0*

0*[U’][rY][Y][Y][V]0*

0*[U’][Z][Z][Z][V’’t]0*

0*[U’’][vM][M][M][V’’’]0*

0*[U’’][N][N][N][V’’’’s]0*

0*[U][X][X][X][X][Vs]0*

 equivalent to

Figure 14: Comparison of cycles between single-
sweep and double-sweep Christmas trees

transformation from X cells to Y cells and from Y
cells to Z cells. This increases the scope of the detec-
tion routine.

8.5 Christmas Tree Variations

8.5.1 Multi-sweep Christmas Trees

Multi-sweep Christmas Trees exhibit the same
“Christmas Tree” like behavior as the above de-
scribed Christmas Trees. As their name suggests,
however, these machines require multiple sweeps back
and forth across the tape before a repeatable pattern
is established. Consider the basic cycle of a single
sweep Christmas Tree: an arbitrary length sequence
of X ’s is capped on each end by a U and a V compo-
nent with the read head on the right edge of V . The
machine sweeps across the tape to the left, convert-
ing each X into a Y , and on the return trip, converts
the Y ’s into Z’s. This completes one cycle as the
resulting configuration is equivalent to the original
configuration with an additional X inserted into the
center.

Fig. 14 illustrates the difference between the iter-
ative cycle of a single-sweep machine and the cor-
responding cycle in a double-sweep machine. The
first sweep looks nearly identical. However, when the
read head reaches the right extremum after convert-
ing each Y component into a Z component, notice
that it is no longer a requirement that the machine
be back in the original state s. This is so because
the machine sweeps back across the tape once more,
converting Z’s into M ’s and M ’s into N ’s before com-
pleting a full cycle and returning to the original state

s. It is only after these two full sweeps that the ma-
chine reaches a state equivalent to the original with
one additional X included.

Double-sweep Christmas Tree Formalization
It is clear that double-sweep Christmas trees are inti-
mately related to Christmas Trees. In fact, the rules
which govern their behavior are essentially identically
to two copies of the specification outlined in sec. 8.4.2
concatenated together (as one might expect):

A machine M is a double-sweep Christmas tree if either
M or Mc satisfy the following conditions for some nonzero
state s:

1. There are nonempty words U , V , and X such that
the tape configuration at some time is 0∗[U][Vs]0

∗,
and at some later time is 0∗[U][X][Vs]0

∗.

2. The following conversions hold, where X, X ′, Y , Y ′,
Z, Z′, M , M ′, N , V , V ′, V ′′, V ′′′, V ′′′′, U , U ′,
and U ′′ are nonempty words and q, r, t, u, and v

are nonzero states (the symbol ⇒ means that M

transforms the left-hand side into the right-hand side
after some number of steps):

• [X][Vs]0
∗ ⇒q [X ′][V ′]0∗

• [Xq][X
′] ⇒q [X ′][Y]

• 0∗[Uq][X
′] ⇒ 0∗[U ′][Y ′]r

• [Y ′][rY] ⇒ [Z][Y ′]r

• [Y ′][rV
′] ⇒ [Z][V ′′

t]

• [Z][V ′′

t]0∗ ⇒u [Z′][V ′′′]0∗

• [Zu][Z′] ⇒u [Z′][M]

• 0∗[U ′

u][Z′] ⇒ 0∗[U ′′][M ′]v

• [M ′][vM] ⇒ [N][M ′]v

• [M ′][vV ′′′] ⇒ [N][V ′′′′

s]

3. [U ′′][N]i[V ′′′′] = [U][X]i+1[V] for all i ≥ 1.

Clearly the first five transformations refer to oper-
ations during the first sweep, while the second five
transformation refer to operations during the second
sweep. In addition, this definition could easily be ex-
tended for three sweeps, four sweeps, etc. Our current
implementation generalizes the extension allowing us
to detect multi-sweep machines of an arbitrary num-
ber of sweeps.18

8.5.2 Leaning Christmas Trees

Leaning Christmas trees escape the original Christ-
mas tree detection routine because they lean in a
sense that on each successive sweep, they transpose

18Our multi-sweep detection routine requires an argument to
denote the number of sweeps to check for. It is not, therefore an
all encompassing “multi-sweep detection routine” but instead
a mechanism to individually check for double-sweep, triple-
sweep, quadruple-sweep, etc. machines as needed.

11

 Leaning Christmas Tree

0*[C][N][N][U][X][X][Vs]0*

0*[C][N][N][N][U’][rY][Y][V]0*

0*[C][N][N][N][U’][Z][Z][V’’s]0*

0*[C][N][N][N][U][X][X][X][Vs]0*

 equivalent to

Figure 15: Representative cycle of a leaning Christ-
mas tree

the resulting configuration along the tape in a gen-
erally rightward (or leftward) direction. More specif-
ically, imagine a tape configuration identical to that
of which begins a sweep in a plain Christmas tree
(0∗[U][Vs]0

∗). Leaning Christmas trees begin with
an additional constant component C on the leftmost
boundary of the non-zero portion of the tape. Af-
ter one complete sweep, 0∗[C][U][Vs]0

∗ is transformed
into 0∗[C][N][U][X][Vs]0

∗. The machine then fol-
lows nearly the same transformation rules specified
for Christmas trees. However, when the read head
reaches the U component, it transforms a portion of
itself into an additional N component. When it re-
turns back to its new right extremum, it has effec-
tively transposed the main components (U , V , and
X ’s) rightward along the tape.

Refer to fig. 15 for further clarification on this
leaning tree pattern. The set of transformations
for leaning Christmas trees is identical to that of
plain Christmas trees with the exception of one.
0∗[Uq][X

′] ⇒ 0∗[U ′][Y ′]r is intuitively replaced with
[N][Uq][X

′]⇒ [N][N][U ′][Y ′]r.

8.6 Counters

Counters manipulate the tape in a way such that
at particular milestones during execution, dedicated
portions of the tape are representative of a binary
number. At successive milestones, the number is
incremented; thus the machine simulates a binary
counter which counts to infinity. Brady studies coun-
ters found in the 4-state, quintuple variation of the
Busy Beaver problem. Our initial discussion is based
closely on these studies:

The 1’s and 0’s of a binary number are represented
as equal length words X and Y respectively in a bi-
nary counting Turing machine. In addition, we must
establish the notion of an auxiliary word Z which is

0 State 0
1 State 1
10 State 2
10 State 2
10 State 1
100 State 3
1000 State 4
1001 State 0
1001 State 2
1001 State 2
1001 State 2
1001 State 1
1001 State 3
1001 State 4
1000 State 1
10000 State 3
100000 State 4
100001 State 0
100001 State 2
100001 State 2
100001 State 2
100001 State 2
100001 State 2
100001 State 1
100001 State 3
100001 State 4
100101 State 0
100101 State 2
100101 State 2
100101 State 2
100101 State 1
100101 State 3
100101 State 4
100001 State 1
100001 State 3
100001 State 4
100000 State 1
1000000 State 3
10000000 State 4
10000001 State 0
10000001 State 2
10000001 State 2
10000001 State 2
10000001 State 2
10000001 State 2
10000001 State 2
10000001 State 2
10000001 State 1
10000001 State 3

= 0*[E][cB][B]*

= 0*[Er][Y][B]*
 checkpoint [1]

= 0*[E][cY][B]*

= 0*[E][Z][cB][B]*

= 0*[E][Zr][Y][B]*

= 0*[Er][X][Y][B]*
 checkpoint [01]

= 0*[E][cX][Y][B]*

= 0*[Er][Y][Y][B]*
 checkpoint [11]

= 0*[E][cY][Y][B]*

= 0*[E][Z][cY][B]*

= 0*[E][Z][Z][cB][B]*

= 0*[E][Z][Zr][Y][B]*

= 0*[E][Zr][X][Y][B]*

= 0*[Er][X][X][Y][B]*
 checkpoint [001]

= 0*[E][cX][X][Y][B]*

Figure 16: Execution of a counter Turing machine

12

of equal length to X and Y and is used in the interim
conversion of the tape from one binary number to the
next. We also require the concept of a “blank” word
B which consists of a sequence of 0’s equal in length
to X , Y , and Z. In this sense, the B word is often
identical to the X word. Finally, the milestone as
mentioned above comes in the form of an end word
E which the read head uses as a checkpoint to begin
and end the conversion of the tape from one binary
number to the next.

Considering these definitions, a binary counter
Turing machine converts an initially blank tape to
a sequence that looks like the following: 0∗[E]c0

∗.
Incidentally, this can also be represented as follows:
0∗[E][cB][B]∗. It is at this point that our checkpoint
has been established and the conversion of the tape
begins. In order to satisfy the requirements of a bi-
nary counter, the following conversions must hold:

• [cX]⇒r [Y]

• [cY]⇒ [Z]c

• [Zr]⇒r [X]

• [cB]⇒r [Y]

• [Er]⇒ [E]c

Brady refers to these c and r states as “carry” and
“return” signals. A carry signal sends the read head
in a rightward direction along the tape and a return
signal sends the read head back to the checkpoint.
The transformations specified above guarantee that
at each instance when the return signal returns to
the checkpoint, the contents on the rest of the tape
are representative of the next binary number in the
sequence. The final transformation ensures that the
checkpoint word E takes the return signal and reflects
back a carry signal while maintaining the integrity
of itself. Refer to fig. 16 for an illustration of this
process.19

Counter Modifications Using the above specifi-
cation (which is identical to that described by Brady)
as a basis for our counter detection routine generates
some curious results. Several machines whose exe-
cution appear to follow the above somehow escape
the detection routine and are classified as holdouts.
Further investigation reveals that the reflection of a
carry signal by an X word generates an incorrect re-
turn signal in these particular machines. However,

19Each checkpoint in this machine is representative of the
next number in a binary sequence if the sequence of X and
Y words (i.e. 0 and 1 bits) are reversed. In this sense this
machine could be considered a “mirror” counter machine.

when this signal is sent to the Z word, the signal
corrects itself. Similar behavior is observed on a few
other machines in which a carry signal sent to a Y
word sends an auxiliary return signal to the preced-
ing Z word before receiving the correcy carry signal
from the Z word.

This situation can be remedied considering the fol-
lowing truth: when a carry signal is generated, the
word immediately preceding the read head at this
point is always either a Z word or an E word. There-
fore, we can modify the transformations for a carry
signal on X and Y by prepending these two possi-
bilities. The first and second transformations defined
above are thus replaced with the following:

• [Z][cX]⇒r [X][Y]

• [E][cX]⇒ [E][cY]

• [Z][cY]⇒ [Z][Z]c

• [E][cY]⇒ [E][Z]c

This minor modification to the grammar increases
the scope of Brady’s original grammar as described
above.

9 Implementation Methodol-

ogy

We have chosen C++ for implementing our search
programs. This decision was made for sev-
eral reasons: the language is fairly architecture-
independent,20

is well-known to be generate some of the fastest
executable programs, and provides a robust object-
oriented framework in which Turing machines can
easily be modelled and simulated.

Depth-first search is the algorithm of choice for
generation and exploration of the normalised tree.
This algorithm is preferable to breadth-first search
because of the lower memory requirements (vis-á-vis
temporary storage of to-be-evaluated machines).21

Refer to fig. 17 for a graphical representation of
the following discussion. We use a stack-based ap-
proach, beginning the stack with the three machines
enumerated in fig. 9. At each step, the machine M
at the top of the stack is popped off and sequen-
tially sent through the non-halt detection routines
described above. The order in which the routines are

20This was important during our research because our early
tests were run on multiple platforms (i.e., Windows, Solaris,
and Mac OS).

21See (Russell & Norvig 1994) for a good discussion of search
techniques and the memory requirements thereof.

13

TMEnumeratorTMEvaluator

nonHaltDetection

start

pushRootOntoStack

popTMFromStack

generateNextChild

pushChildOntoStack

NEXT CHILD EXISTS

NO MORE CHILDREN

resetMachine

performTransition

HALT IN NON-HALT STATE

RUNNING

checkForCandidacy

HALT

holdout

STEP LIMIT REACHED

nonHaltFilters

NEXT TM EXISTS

end

STACK IS EMPTY

FALSE

classifyTM

TRUE

Figure 17: Representation of the program control se-
quence used in our implementation

applied is based largely on simulation tests to deter-
mine which routines are most efficient and which be-
haviors are most prominant in the search space. We
define the sequence as follows:

1. Back tracking

2. Subset Loop

3. Simple Loop

4. Single-Sweep Christmas Tree

5. Double-Sweep Christmas Tree

6. Leaning Christmas Tree

7. Triple-Sweep Christmas Tree

8. Quadruple-Sweep Christmas Tree

9. Quintuple-Sweep Christmas Tree

10. Additional Multi-Sweep Christmas Trees as
needed22

11. Counter

If any of the above routines confirm M as exhibit-
ing its behavior specification, M is immediately clas-
sified as such and discarded. Otherwise, the machine
is reset and passed on to the execution stage.

At this point, M is run until such time as it halts
or it reaches a predetermined step limit at which time
it is determined to be a holdout and not further con-
sidered. If M halts, then: If M is a fully-defined
machine, its productivity is evaluated and standard
positioning taken into account; if this is a new most-
productive (or maximal shift) machine, then it is
recorded; it is discarded otherwise. If, on the other
hand, M is a partially-defined machine then its chil-
dren in the normalised tree are generated and pushed
(in theoretically arbitrary order) onto the stack. The
search terminates when the stack is empty, at which
time a search equivalent to exhausting the search
space has been completed.

Our searches were run on a Macintosh Xserve
server running MacOS X version 10.2 with 2.0GB
main memory powered by twin 1Ghz PowerPC G4
processors with 256K L2 and 2MB L3 cache, per pro-
cessor. GCC 3.2 was used with the “-O2” compiler
flag.

22as n increases, additional sweep Christmas Tree detection
routines are and will be required to account for every machine
in the search space

14

n Tree-Norm Write-1 Move-R
2 93.94909% 96.40299% 99.13123%
3 99.47388% 99.72263% 99.92049%
4 99.96288% 99.98253% 99.99448%
5 99.99904% 99.99968%

n s:s s:s′-s′:s Empty Tape
2 99.31413% 99.40558% 99.40558%
3 99.96057% 99.97131% 99.97284%
4 99.99835% 99.99895% 99.99903%
5 99.99994% 99.99997% 99.99997%
6 99.9999999%

Table 1: Percentage Reduction Factor of Cumulative
Optimizations

10 Results and Records

10.1 Efficacy of Optimizations

Empirical analysis of the optimizations discussed in
sect. 7 helps us see how much of the search space has
been cumulatively reduced by the addition of each
optimization. The optimizations were implemented
and tested in a layered approach in the order that
they were discussed previously.

Table 1 shows the percentage reduction factor of
the search space given the addition of each optimiza-
tion. These data are identical for all four formula-
tions B, O, P , and R. The label “tree-norm” refers
to the basic tree normalisation (sect. 7.1), “write-1”
to the forced first action (sect. 7.1.4), “move-R” to
the forced first move (sect. 7.3), “s:s” to removal of
simple nonproductive transitions (sect. 7.2.1), “s:s′-
s′:s” to removal of complex nonproductive transitions
(sect. 7.2.2), and “empty tape” to the empty tape re-
duction (sect. 7.1.4).

The percentage reduction factor R is defined as the
percentage reduction in the number of Turing ma-
chines evaluated: given the size of the entire search
space, S, and the number of machines evaluated dur-
ing a search, M , R = 100(1−M/S). The last 2 rows
of the table (i.e. for n = 5, 6) are incomplete because
it is impossible to practically run searches with these
values of n without a fair number of optimizations in
place.

Of particular interest is the case of n = 6 with
all optimizations enabled. 99.999999% of the search
space has been eliminated from consideration which
sounds quite impressive. Considering that the full
(i.e. completely unoptimised) search space is approx-
imately 5.96× 1016, however, reveals that we must—
given all of our optimizations and the immense reduc-
tion of the search space—evaluate 570 million Turing

99.45

99.5

99.55

99.6

99.65

99.7

99.75

99.8

99.85

99.9

99.95

100

tree-norm write-1 move-R s:s s:s’-s’:s empty tape

R
(%

)

Optimisations Enabled (Cumulative)

Figure 18: Optimization Efficacy for n = 3

99.96

99.965

99.97

99.975

99.98

99.985

99.99

99.995

100

tree-norm write-1 move-R s:s s:s’-s’:s empty tape

R
(%

)

Optimisations Enabled (Cumulative)

Figure 19: Optimization Efficacy for n = 4

machines, still a daunting task. Even if we assume
that the trend in efficacy from 2..6 continues, per-
forming a search for n = 7 would entail, estimating
very optimistically, evaluating on the order of 3×1011

machines.23

Fig. 18, fig. 19, and fig. 20 show in graphical form
the same data as table 1; as before, R, the reduction
factor, refers to the the percentage of the search space
that has been reduced by adding an optimization to
those that have already been implemented.

23This number was obtained by calculating the total size of
the search space which is approximately 2.98 × 1020 times an
(admittedly wishful) optimization factor of 99.9999999%.

15

Category n = 2 n = 3 n = 4 n = 5 n = 6
Standard Halt 6 80 2264 103095 6640133
Non-standard Halt 2 76 3844 271497 24911677
s:s-transition 18 469 24425 1872797 189304589
s:s′-s′:s-transition 10 237 11428 806981 76717404
Write-1 5 5 5 5 5
Move-R 4 5 5 5 5
Empty-tape 0 8 319 18527 1882827
Back-tracker 23 865 49481 4008364 403910416
Subset loop 0 0 146 11013 2582783
Simple loop 5 130 5605 381736 48492276
Christmas tree 0 2 156 13987 2166668
Double sweep Christmas Tree 0 0 23 2356 419598
Leaning Christmas Tree 0 0 0 69 23129
3-Sweep Christmas Tree 0 0 0 470 77740
4-Sweep Christmas Tree 0 0 0 76 17345
5-Sweep Christmas Tree 0 0 0 0 2156
6-Sweep Christmas Tree 0 0 0 0 1352
7-Sweep Christmas Tree 0 0 0 0 345
8-Sweep Christmas Tree 0 0 0 0 65
Counter 0 0 0 113 25678
Holdout 0 0 0 98 42166
Total 73 1877 97701 7491189 757218357

Table 2: Distribution of Normalized Machines for implicit formulations (B and O)

Category n = 2 n = 3 n = 4 n = 5 n = 6
Standard Halt 13 229 7224 350979 23328811
Non-standard Halt 12 325 15389 1061240 96749364
s:s-transition 18 469 24425 1872797 189304589
s:s′-s′:s-transition 14 286 12881 880534 82182812
Write-1 7 7 7 7 7
Move-R 6 7 7 7 7
Empty-tape 2 28 684 31122 2546483
Back-tracker 23 865 49481 4008364 403910416
Subset loop 0 0 146 11013 2582783
Simple loop 5 130 5605 381736 48492276
Christmas tree 0 2 156 13987 2166668
Double sweep Christmas Tree 0 0 23 2356 419598
Leaning Christmas Tree 0 0 0 69 23129
3-Sweep Christmas Tree 0 0 0 470 77740
4-Sweep Christmas Tree 0 0 0 76 17345
5-Sweep Christmas Tree 0 0 0 0 2156
6-Sweep Christmas Tree 0 0 0 0 1352
7-Sweep Christmas Tree 0 0 0 0 345
8-Sweep Christmas Tree 0 0 0 0 65
Counter 0 0 0 113 24678
Holdout 0 0 0 98 42166
Total 100 2348 116028 8614968 851873790

Table 3: Distribution of Normalized Machines for explicit formulations (P and R)

16

99.999

99.9991

99.9992

99.9993

99.9994

99.9995

99.9996

99.9997

99.9998

99.9999

100

tree-norm write-1 move-R s:s s:s’-s’:s

R
(%

)

Optimisations Enabled (Cumulative)

Figure 20: Optimization Efficacy for n = 5

10.2 Scope of Non-Halt Detection

Given the substantial reduction of the search space,
we now turn to the overall distribution of the result-
ing set of machines in terms of halters, non-halters
(classified according to the algorithms specified in
sect. 8), and machines pruned from the tree (accord-
ing to the rules outlined in sect. 7). Tables 2 and 3
respectively outline the overall statistics for the im-
plicit formulations of the problem (B and O) and the
explicit formulations (P and R).

Recall from sect. 9 the implementation methodol-
ogy for the non-halt detection filter. When a machine
is tested for non-haltingness, the detection routines
are applied sequentially in the order that they ap-
pear in tables 2 and 3. As a result, non-halters are
classified according to the routine for which they test
positive first. Significant overlap, therefore, is likely
among the categories. Regardless, confirmation of
membership in any single one of the non-halting class-
ficiations is conclusive evidence to render a machine
a proven non-candidate which is sufficient given our
specified goal. Additional analysis in this area may
be required in order to optimize run-time and pos-
sibly re-sequence the non-halt filters when attacking
the problem for higher values of n such as 7, 8, and
beyond.

In any case, the category of most interest is clearly
the Holdout category. Holdouts are machines which
have tested negative for all non-halt detection filters,
and then have also been run to the pre-defined step
limit without halting. For a particular value of n,
if the number of these “unaccounted for” machines
equals 0, then the candidate champion for this n be-
comes no longer simply a candidate champion, but a

start

0

halt2

1:0

1

0:10:L

1:R

3 4

5

Figure 21: Partially defined machine pruned from the
tree as an empty tape machine

proven Busy Beaver, whose productivity is the con-
firmed value of BB(n).24 As is illustrated in Tables 2
and 3, the present effort has confirmed BB(n) for
n = 2, 3, 4, and very nearly 5.

10.3 Extrapolation of Distribution
via. Tree Normalization

The data illustrated in Table 2 describes only a sub-
set of the entire search space for each particular value
of n. According to the methods used to generate this
subset, every machine not in this set should theoret-
ically be equivalent in behavior to one or more ma-
chines in our pruned data. We wish to confirm this,
and do so by making use of a representative statistic
calculation to extrapolate the observed data set to
one which is equal in size to the entire search space.

Consider the 6-state machine illustrated in fig. 21.
This machine is pruned from the tree and classified
as an empty tape machine before it is discarded. No-
tice that states 3, 4, and 5 are not even used in
the definition of the machine. From the concept
of isomorphic machines as outlined in sect. 7.1.1,
we can calculate the number of isomorphs that this
machine has using a simple permutations function:
Isomorphs(M) = (n − 1)P (r − 1)25 where n is the
number of states in the machine M and r is the num-

24We generalize the four variants of the problem for simplic-
ity’s sake. In this case BB(n) is representative of the particular
formulation for which the statistics apply. In general, however,
if a result is confirmed for one particular formulation for the
value n, it is likely confirmed for all four.

25For those who are unaware, the permutations function xPy
is defined as x!/(x−y)! where the result is equal to the number
of sets of size y elements that can be created from the elements
in a set of size x

17

ber of used states in the machine.26 Thus this ma-
chine has (6− 1)P (3− 1) = 20 equivalent isomorphic
machines.

In addition to isomorphic machines, we can also
classify each child machine of fig. 21 as an empty
state machine as well. To calculate this, for implicit
formulations we use Children(M) = (4n + 1)2n−m,
and for explicit machines we use Children(M) =
(4n + 4)2n−m, where n is again the number of states
in machine M and m is the number of defined transi-
tions in the machine.27 Our example, therefore, has
(4× 6 + 1)2×6−4 ≃ 1.53× 1011 children machines.

Each of the isomorphs also has the same number of
children as well; thus the total number of machines
which a particular machine pruned from the tree rep-
resents is equal to the number of isomorphs times the
number of children machines:

Represents(M) = (n− 1)P (r − 1)× [(4n + 1)2n−m]

The machine illustrated in fig. 21 is therefore repre-
sentative of ≃ 3.05× 1012 machines.

Tables 4 and 5 respectively represent the extrapo-
lated distribution data for the implicit and explicit
formulations of the problem using the above rep-
resentative calculation statistic. The data is com-
piled in the same manner as the observed statistics
in sect. 10.2, except instead of adding 1 to the neces-
sary category when classifying a machine, its repre-
sentative statistic using the formula specified above
is added. As expected, the sum of the invidual cat-
egories for each value of n is equivalent to the size
of the entire search space for that n. Our assertion
that the normalized data set is a complete and fully
representative sample is confirmed.

10.4 Records Set by the Present Ef-
fort

At last, we turn to the results of the present effort.
Table 6 displays the results of our efforts in addition
to those previously known. The records set by the
present effort have been marked with asterisks. As
mentioned earlier, the values up through n = 4 are

26We subtract 1 from n and r because the starting state is
always state 0 and is thus never renamed

27These formulas require a similar derivation to those illus-
trated in sect. 5. For an n-state machine, there are a total
of 2n possible transitions that can be defined (one for each
of the two symbols 0 and 1 on each of the n states). Each
of these transitions has 4 possible choices times n + 1 possi-
ble end states. Since m transitions are already defined, we
eliminate these possibilities from consideration rendering the
formula (4n+4)2n−m for explicit machines and (4n+1)2n for
implicit machines.

halt
start

01
0:1

4
1:L

1:R

2
0:R

3

1:0

5

0:R

1:L

0:1

0:R

1:L

1

0:R

Figure 22: B(6)− 25

halt start

0

1 0:1

1:R

0:1
2

1:R

3

0:L

4

1:0 0:L

1:L

0:L

5

1:L

0

1:L

Figure 23: P (6)− 41

confirmed as truths due to the classification of ev-
ery machine in the search space into an identifiable
category.

We also present several Turing machines that are
of interest. Several are champions in one of the Busy
Beaver contests under consideration—either in terms
of productivity or in terms of shifts:

• Fig. 22 is the current world champion for the B(6)
and b(6) which our efforts have confirmed. This ma-
chine writes 25 contiguous 1’s on its tape before halt-
ing in standard position after 255 shifts.

• Fig. 23 is a new champion for P (6) found by the
present effort; it halts after 841 transitions at which
point it is scanning the left-most of 41 consecutive
1’s on its tape.

• Fig. 24 is the current R(6) champion revealed by the

start 0

halt

1

0:1

4
1:L

0:1

21:R

1:0

3

0:R

1:R

0:R

1:L

5
0:1

0:1

1:R

Figure 24: R(6)− 163

18

Category n = 2 n = 3 n = 4 n = 5 n = 6
Standard Halt 166 90207 103718908 206260328949 631450578198330
Non-standard Halt 18 15032 21405426 48677326680 163683442664210
s:s-transition 1826 1429596 2141852028 5246088511050 19075918871435310
s:s′-s′:s-transition 330 266585 405653368 1002627681897 3667246872283790
Write-1 3645 2599051 3693048057 8737080512391 30994415283203125
Move-R 324 257049 386201104 945571484025 3433227539062500
Empty-tape 0 2704 7859610 26709723432 123179236700000
Back-tracker 135 66745 72352399 138322654089 230363405036890
Subset loop 0 0 67116 248518872 13058421488500
Simple loop 117 99788 143484879 327997316304 1270875034985250
Christmas tree 0 52 112200 287787024 1176689708500
Double sweep Christmas Tree 0 0 2346 8485344 374554887500
Leaning Christmas Tree 0 0 0 95256 1552083000
3-Sweep Christmas Tree 0 0 0 236880 1562700000
4-Sweep Christmas Tree 0 0 0 38304 261123000
5-Sweep Christmas Tree 0 0 0 0 6756000
6-Sweep Christmas Tree 0 0 0 0 4056000
7-Sweep Christmas Tree 0 0 0 0 1035000
8-Sweep Christmas Tree 0 0 0 0 195000
Counter 0 0 0 208152 7838415000
Holdout 0 0 0 69552 719346000
Total 6561 4826809 6975757441 16679880978201 59604644775390625
Expected Total (4n + 1)2n 6561 4826809 6975757441 16679880978201 59604644775390625

Table 4: Distribution of Normalized Machines for implicit formulations (B and O)

19

Category n = 2 n = 3 n = 4 n = 5 n = 6
Standard Halt 2070 1305996 1637990190 3449265173568 10998281857655016
Non-standard Halt 342 264574 378013468 873071200752 2984875787381704
s:s-transition 4088 3837006 6380815032 16730013296160 63831699096659136
s:s′-s′:s-transition 872 803730 1322214470 3441456618024 13060513915153128
Write-1 12096 9437184 14080000000 34343498022912 124402642012078080
Move-R 864 786432 1280000000 3302259425280 12440264201207808
Empty-tape 2 7256 20959920 74931910032 360142150219680
Back-tracker 210 129214 160885480 338954514360 629351707467304
Subset loop 0 0 90480 396497088 27109195802080
Simple loop 192 205760 338861280 849030572736 3481118924095680
Christmas tree 0 64 166920 491091264 2187363411520
Double sweep Christmas Tree 0 0 2760 11862720 58408052640
Leaning Christmas Tree 0 0 0 119232 2255084160
3-Sweep Christmas Tree 0 0 0 270720 2065355040
4-Sweep Christmas Tree 0 0 0 43776 342414240
5-Sweep Christmas Tree 0 0 0 0 7607040
6-Sweep Christmas Tree 0 0 0 0 4056000
7-Sweep Christmas Tree 0 0 0 0 1035000
8-Sweep Christmas Tree 0 0 0 0 195000
Counter 0 0 0 263808
Holdout 0 0 0 82944 2250309960
Total 20736 16777216 25600000000 63403380965376 232218265089212416
Expected Total (4n + 4)2n 20736 16777216 25600000000 63403380965376 232218265089212416

Table 5: Distribution of Normalized Machines for explicit formulations (P and R)

n B(n) b(n) O(n) o(n) P (n) p(n) R(n) r(n)
1 1 1 1 1*
2 2 3 2 3 2 4 2 4
3 3 13* 3 13* 4* 14* 4* 14*
4 5 31* 8 37* 7* 32* 8* 38*
5 ≥ 11 ≥ 57* ≥ 15 ≥ 111 ≥ 16* ≥ 112* ≥ 16* ≥ 112*
6 ≥ 25 ≥ 255 ≥ 239* ≥ 41606* ≥ 163* ≥ 27174* ≥ 240* ≥ 41607*
7 ≥ 192 ≥ 13682
8 ≥ 672 ≥ 198339

Table 6: Our Results

20

present effort. It halts after 33527 transitions with
163 1’s on its tape in a very curious pattern: a single
1 followd by 81 repetitions of 011; the machine halts
on the right-most 1. This machine is also the longest
running known halting 6-state quadruple Turing ma-
chine.

11 Current Runs/Attacks

• currently running ...

• farmer/worker(salsa)

• what’s running now with NSF hardware

•
...

12 The Future of the Busy
Beaver Problem

• hypercomputation and the mind. Would we be
entitled to infer that the human mind is hyper-
computational from continued success? (Selmer)

• Truly chaotic machines, isolating them, etc.

• finding new non-halting patterns?
(Bram/Owen/Selmer)

• visual reasoning. Are there better ways to rep-
resent the behavior of TMs? Instead of tape
records, etc.? (Bram)

References

Boolos, G. S. & Jeffrey, R. C. (1989), Computability and

Logic, Cambridge University Press, Cambridge, UK.

Brady, A. (1983), ‘The determination of the value
of rado’s noncomputable function Σ(k) for four-
state turing machines’, Mathematics of Computation

40(162), 647–665.

Church, A. (1936), An unsolvable problem of elementary
number theory, in M. Dave, ed., ‘The Undecidable’,
Raven Press, New York, NY, pp. 89–100.

Lin, S. & Rado, T. (1964), ‘Computer studies of turing
machine problems’, Journal of the Association for

Computing Machinery 12(2), 196–212.

Linz, P. (1997), An Introduction to Formal Languages and

Automata, Jones and Bartlett, Sudbury, MA.

Machlin, R. & Stout, Q. (1990), ‘The complex behavior
of simple machines’, Physica D 42, 85–98.

Pereira, F., Machado, P., Costa, E. & Cardoso, A.
(n.d.), Busy beaver: An evolutionary approach. cite-
seer.nj.nec.com/pereira99busy.html.

Rado, T. (1963), ‘On non-computable functions’, Bell

System Technical Journal 41, 877–884.

Révész, G. (1983), Introduction to Formal Languages,
McGraw-Hill, New York, NY.

Ross, K. (2003), Master’s thesis, Rensselaer Polytechnic
Institute.

Russell, S. & Norvig, P. (1994), Artificial Intelligence: A

Modern Approach, Prentice Hall, Saddle River, NJ.

van Heuveln et al, B. (n.d.), Attacking the busy beaver
problem by incorporating the tree normalization
method into a farmer/worker scheme.

21

