Tree Tent

0) Definitions used by all LEGUP puzzles

a. Cell: a square in the grid

b. Content: what is in a cell

c. A cell is unknown if its content is unknown

d. A cell is adjacent to another cell if it is to the left, right, above, or below it. (cells not on the edge have 4 adjacent cells)

e. A cell adjoins another cell if it is either adjacent or has a corner in common with it. (cells not on the edge have 8 adjoining cells)

1) Definitions

a. nj = the clue for row or column j

b. kj = the number of currently placed tents in row or column j
c. tj = the number of trees in row or column j
d. uj = the number of unknowns in row or column j

2) Game Rules (rules of the game as it is defined)
a. Either grass or a tent must be placed into every unknown
b. Exactly nj tents should be placed in row or column j
c. A tent cannot adjoin another tent
d. Each tree should have exactly one tent assigned to it, and each tent should be assigned to exactly one tent. A tent that is assigned to a tree should be adjacent to that tree.
3) Basic Contradiction Rules (rules that identify situations that directly contradict the game rules):
a. Something other than grass or a tent is placed in unknown
Note: The nature of the interface will make sure that this will never happen. So, this really shouldn’t be an explicit rule, but rather something that is implicitly built into the interface. I am putting it here though to show how in general, contradiction rules can be immediately generated from the game rules.
b. Contradicting game rule 2.b:

i. nj < kj for some row or column j

ii. nj > kj & uj = 0 for some row or column j
c. Contradicting game rule 2.c:

i. A tent that adjoins some other tent

d. Contradicting game rule 2.d:

i. A tree whose adjacent cells are either known non-tents (grass, tree, border) or tents assigned to other trees
ii. A tent whose adjacent cells are either non-trees or trees with another tent assigned to it
Note: One could also have contradictions if multiple tents are assigned to a tree, or if a tree is assigned to multiple trees. However, as with 3.a, we should probably just make sure that the LEGUP interface for tree-tent will simply not accommodate any such multiple assignments, and so there is no need to make these contradiction rules explicit either.
4) Basic Case Rules (rules that identify a limited number of possible progressions from a board by focusing on some particular feature, and as directly dictated by the game rules)
a. An unknown cell is either grass or a tent

Note: generated from game rule 2.a

b. All possible configurations of placing nj – kj tents in the remaining unknown cells of row or column j
Note: generated from game rule 2.b.

Note: This case rule does not rule out placing two tents next to each other. See rule
c. For any tree that has no tent assigned to it yet: All possible assignments of a tent to that tree (this may involve assigning an already placed but unassigned tent to that tree or placing a tent in an adjacent unknown).

Note: generated from game rule 2.d
d. For any tent that is not yet assigned to a tree: All possible assignments of that tent to a tree.

Note: generated from game rule 2.d
5) Derived Rules
Note: These are pretty straightforward, but derivable, rules. Until a ‘rule-generator’ is in place that allows one to derive these rules and package them up, we should hardcode these rules in the puzzle modules and make them available to the user (though maybe only after the user has ‘earned’ the use of the rule by proving a basic instance of the rule for some specific board). In fact, even with such a rule-generator, we probably want these rules hard-coded anyway, because general rule could be very hard to generate.
a. For some row or column j:

i. if nj = kj, then every unknown in that row or column is grass

Note: can be derived from 3.b.i.
ii. if uj = nj - kj, all unknown cells are tents

Note: can be derived from 4.b: there is only one possible configuration, so the ‘merger’ of possible paths will make this one possibility a definite
b. Any unknown cell that adjoins a tent is grass

Note: can be derived from 3.c. (and, technically, 3a, but again we won’t make 3a explicit, and have mechanics of tree-tent interface take care of this)
c. If there is only one unknown cell adjacent to an unassigned tree whose other adjacent cells are either grass or tents assigned to other trees, that unknown cell is a tent and assigned to that tree.

Note: can be derived from 3.d.i.
d. Any space that is not adjacent to an unassigned tree is grass

Note: can be derived from 3.d.ii.
e. (Contradiction) nj > kj + uj for some row or column j
Note: Can be derived from 4b: there are simply no possible ways to place the remaining tents in the remaining spaces.

f. (Case) All possible configurations of placing nj – kj tents, without any two tents adjoining, in the remaining unknown cells of row or column j

Note: These possible configurations can be derived from 4.b. and 3.c
Note: Checking for adjoining will look at neighboring rows or columns

g. If there is only one way to place remaining nj – kj tents, without any two tents adjoining, in the remaining unknown cells of row or column j, do it!

Note: This one follows from 5.f.: there would be one possible configuration.
h. (Contradiction) nj > maximum # tents that can possibly be placed in row or column j given what unknowns are left and what’s already placed in row/column

Note: from 5.f.: there would be no possible configurations left.

