
Computationalism 

Introduction to Cognitive Science 



Computationalism 
• Cognition can be defined in terms of information-

processing: 
– Perception is taking in information from the environment 
– Memory/Beliefs/Knowledge is storing information 
– Reasoning is inferring new information from existing information 
– Planning is using information to make decisions 
– Etc. 

• Information-processing can (only?!) be done through 
computation 

• Therefore, cognition can (only?!) be achieved 
(implemented/realized) through computation. 



Computationalism and 
Predictions about Aliens 

• Notice that the argument on the previous 
slide is a purely conceptual one in that it is 
not based on any empirical evidence. 

• In fact (assuming we fill in the ‘only’ part 
on the previous slide), it predicts the 
existence of some kind of computer in 
(behind) any kind of cognitive being. 



Computationalism and the Brain 

• Our brain is a computer  
– We will see some arguments for this claim in 

the rest of the presentation 
• So, the fact that we have a brain can be seen 

as empirical confirmation of (and thus 
evidence for) the view of computationalism. 
– Indeed, we know that the nature of the mind changes 

when the brain changes (neural dependency). Thus, 
maybe (although I’ll reject this analogy later!!!!): 

• brain = ‘hardware’  
• mind = ‘software’ 



The Brain is a Computer, Part I 

• The brain is unlike any other organ; the 
heart, lungs, liver, etc. all do something 
very much physical: they collect, filter, 
pump, etc.  

• The brain, however, is quite different: Its 
function seems to be to take in signals, and 
send out signals, in communication with the 
nervous system.  

• But, as such, the brain seems to be an 
information-processor: a computer. 





Algorithms 
• An algorithm is an effective step-by-step procedure: 

– During each step, we perform some operation, and move on to 
some other step 

– Effective: A ‘normal’ human being can ‘follow’ the algorithm, i.e. 
at each point it is exactly clear what action to perform, this action 
is simple enough for us to perform, and after each step it is clear 
which step to take next 

– Usually, we require that there be some end to this process. 
 

• Examples: 
– Cookbook recipe  
– Filling out tax forms 
– Furniture assembly 
– Long division 



Computations 

• A computation is a kind of algorithm: a 
computation is a symbol-manipulation 
algorithm. 
– The symbols represent something 
– Hence, the computation is about that 

something: we compute something 
– Example: long division. 

• Not every algorithm is a computation 
– Example: furniture assembly instructions 



Example: Long Division 



Computers 

• A ‘computer’ is something that computes, i.e. 
something that performs a computation. 
 

• Between the 17th and 20th century, a ‘computer’ 
was understood to be a human being; humans who 
computed things! 
 

• It was only by automating (mechanizing) this 
process, that we obtained ‘computers’ as we now 
think of them. 



The Scope and Limits of  
Computation 

• In 1936, Alan Turing wrote a paper in which he 
tried to give an answer to the decision problem in 
formal logic: is there a way to decide, for any 
arguments expressed in formal logic, whether it is 
valid or not? 

• Turing thought the answer to the decision problem 
was negative: that there is no procedure to tell all 
valid arguments from all invalid arguments.  

• To prove this, Turing needed to generalize over all 
possible computations. 

• Turing tried to do this by finding basic elements to 
which we can reduce any such process. 



States and Symbols 

• Take the example of multiplication: we make 
marks on any place on the paper, depending on 
what other marks there already are, and on what 
‘stage’ in the algorithm we are (we can be in the 
process of multiplying two digits, adding a bunch 
of digits, carrying over). 

• So, when going through an algorithm we go 
through a series of stages or states that indicate 
what we should do next (we should multiply two 
digits, we should write a digit, we should carry 
over a digit, we should add digits, etc).  



A Finite Number of Abstract States 

• The stages we are in vary between the different 
algorithms we use to solve different problems.  

• However, no matter how we characterize these 
states, what they ultimately come down to is that 
they indicate what symbols to write based on what 
symbols there are. 

• Hence, all we should be able to do is to be able to 
discriminate between different states 
– what we call them is completely irrelevant! 

• Moreover, although an algorithm can have any 
number of stages defined, since we want an 
answer after a finite number of steps, there can 
only be a finite number of such states. 



A Finite Set of Abstract Symbols 

• Next, Turing pointed out that the symbols are 
abstract as well: whether we use ‘1’ to represent 
the number 1, or ‘☺’ to do so, doesn’t matter. 

• All that matters is that different symbols can be 
used to represent different things. 
– What actual symbols we use is irrelevant! 

• Also, while we can use any number of symbols, 
any finite computation will only deal with a finite 
number of symbols. So, all we need is a finite set 
of symbols. 



A String of Symbols 

• While we can write symbols at different places 
(e.g. in multiplication we use a 2-dimensional 
grid), symbols have a discrete location on the 
paper. These discrete locations can be numbered. 

• Or, put another way: we should be able to do 
whatever we did before by writing the symbols in 
one big long (actually, of arbitrarily long size) 
string of symbols. 
 



Reading, Writing, and Moving 
between Symbols 

• During the computation, we write down symbols 
on the basis of the presence of other symbols. So, 
we need to be able to read and write symbols, but 
we also need to get to the right location to read 
and write those symbols.  

• With one big long symbol string, however, we can 
get to any desired location simply by moving left 
or right along this symbol string, one symbol at a 
time. 



Components for Computation 

• Turing thus obtained the following basic 
components of effective computation: 
– A finite set of states 
– A finite set of symbols 
– One big symbol string of arbitrary size 
– An ability to move along this symbol string 
– An ability to read a symbol 
– An ability to write a symbol 

• We call this: a Turing-machine 



Turing Machines Demo 



Computable Functions 

• We can use a Turing-machine to compute the sum, 
and product, of any two numbers. 
 

• These functions are therefore Turing-computable 
 

• Lots of other functions are Turing-computable 
 

• E.g. all functions needed to run Microsoft Word 
are Turing-computable (i.e. you can run Microsoft 
Word on a Turing-machine) 



The Church-Turing Thesis 

• If a computer of type X can compute a 
function f, we say that f is X-computable 
 

• The Church-Turing Thesis:  
– No matter what type of computer X you have: 

All functions that are X-computable are Turing-
computable. 

 
• In short: Turing-machines can compute 

anything that is computable. 



0’s and 1’s 

• Turing showed how all computation can be done 
using a limited number of simple processes 
manipulating a small number of symbols. 

• Some years later, Claude Shannon showed that all 
effective computations can be performed through 
the manipulation of bitstrings (strings of 0’s and 
1’s) alone. 

• You do need lots of these 0’s and 1’s, and you do 
need to perform lots of these simple operations. 

• But this is exactly how the modern ‘digital 
computer’ does things. That is, at the ‘machine 
level’, it’s all simple manipulations of 0’s and 1’s. 



Physical Dichotomies 

• The 0’s and 1’s are just abstractions though; 
they need to be physically implemented. 

• Thus, you need some kind of physical 
dichotomy, e.g. hole in punch card or not, 
voltage high or low, quantum spin up or 
down, penny on piece of toilet paper or not, 
etc. 
 



The Brain is a Computer, Part II 

• These theoretic results in information-
processing show that one can obtain 
powerful information-processing capacities 
using very simple resources … as long as 
you have lots of them. Well: 
– Our brain has ~1011 neurons 
– Our brain has ~1014 neural connections 
– Thus, a neuron firing or not could constitute 0’s 

and 1’s, and a neuron’s firing as a function of 
connected neurons’ firing, could implement the 
necessary operations needed for computation. 



Causal Topology 

• A physical system implements a computer 
program if and only if that system implements a 
certain causal topology. 

• This topology is highly abstract. As long as you 
retain the functionality of the parts, and the 
connections between the parts, you can: 
– Move parts 
– Stretch parts 
– Replace parts  

• This is why there can be mechanical computers, 
electronic computers, DNA computers, optical 
computers, quantum computers, etc! 



The Brain is a Computer, Part III 

• Again, it seems to fit: 
– The brain implements a complex causal 

topology where the only thing that seems to 
matter is how the neurons are connected, not 
where they are located, what physical material 
they are made of, how big they are, how they 
are shaped, etc.  

– E.g. In case of neural defects, other areas of the 
brain can take over their original task 
 



Universal Turing Machines 

UTM TM, I TM(I) 

Turing proved that there exists a Turing-machine  
that can emulate any other Turing-machine 

Description of  
machine TM 
and input I 

The output that 
machine TM would  
give if I would be its  
input The Universal Turing Machine 



Program as Data 
Hardware and Software 

• Universal Machines take in programs as data 
– Your laptop is a Universal Machine. It runs programs. 

• Clear distinction between hardware and software: 
– The (universal) machine is hardware 
– The program is software 
– The machine will function differently depending on the 

software that is ‘fed into’ and ‘run on’ it 
– Without software running on the hardware, the 

hardware does nothing of interest 
– The pieces of software are portable: you can take the 

software and put it on a different (universal) machine 



Mind :: Brain = 
 Software :: Hardware? 

• This analogy appeals to the idea of physical 
reductionism: 
– Minds (or aspects of the mind) exist as high-level 

abstractions of a working brain 
– (somewhat) Similarly, a program (a piece of software) 

provides an abstract description of the functionality of a 
machine running that program 

• However, this is as far as the analogy goes. 
– As the next few slides show, there are some very 

important dis-analogies between ‘mind’ and ‘software’ 
(as well as between ‘brain’ and ‘hardware’) 



Where the Analogy Breaks Down 

• First of all, even if the program is written in a high-level 
programming language, it may still not provide the level of 
abstraction we use when talking about (and wanting to 
explain) the behavior of a machine 
– E.g. If the computer makes a mistake, there is usually no line in the 

program that says something equivalent to “make mistake now”. 
And even when things function just right, the behavior of the 
working computer as a whole is at a higher level of description 
than the program. 

– Similarly, most computationalists state that computations are what 
underlie the mind: we can explain mental properties by pointing to 
computational properties as physically realized (implemented) by 
the brain, but minds still exist at a higher level of abstraction than 
those computational descriptions. 



Where the Analogy Really 
Breaks Down 

• The brain is not a piece of hardware that ‘runs’ a mind 
– There is nothing similar in the brain to a ‘CPU’ that fetches and 

then executes one of an explicit set of instructions 
– The brain is not some ‘blank slate’ that’s just ‘sitting there’ when 

there is no ‘mind’ running ‘on’ it 

• The mind is not a piece of software you ‘stick’ into a brain 
– It is not a piece of data; it is not symbol strings 
– It doesn’t describe the abstraction; it *is* the abstraction! 

• There is no clear separation. Despite what movies depict: 
– Brains don’t ‘take in’ a mind ... or some other mind 
– Minds aren’t portable entities you can stick into any brain you 

want. In fact: no brain -> no mind! 



Programming and Reconfiguring 

• The brain does reconfigure 
– Neural connections get added or removed 
– More or less neural resources can be devoted to tasks 

• These changes effect what happens at the higher-level of 
abstraction where we find ‘minds’ 
– So the mind does not provide instructions to the brain saying how 

it ought to function, but rather is the abstraction that results from a 
working brain 

• Outside stimuli (such as learning environments) may be 
the ultimate cause for these changes 
– Hence, if the brain is ‘programmed’ at all, we can say that it is 

programmed by its environment. But again, that is not at all what a 
mind is: Mind ≠ Software = Program = Instructions 
 



Summary 

• Two independent arguments for 
computationalism: 
– One conceptual: cognition is information-

processing, and that’s exactly what computers 
do 

– One empirical: the mind seems dependent on 
the brain, where the brain seems to be 
implementing a causal topology consisting of a 
large numbers of simple devices capable of 
supporting complex information-processing 
capacities  
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