
Computationalism

Introduction to Cognitive Science

Computationalism
• Cognition can be defined in terms of information-

processing:
– Perception is taking in information from the environment
– Memory/Beliefs/Knowledge is storing information
– Reasoning is inferring new information from existing information
– Planning is using information to make decisions
– Etc.

• Information-processing can (only?!) be done through
computation

• Therefore, cognition can (only?!) be achieved
(implemented/realized) through computation.

Computationalism and
Predictions about Aliens

• Notice that the argument on the previous
slide is a purely conceptual one in that it is
not based on any empirical evidence.

• In fact (assuming we fill in the ‘only’ part
on the previous slide), it predicts the
existence of some kind of computer in
(behind) any kind of cognitive being.

Computationalism and the Brain

• Our brain is a computer
– We will see some arguments for this claim in

the rest of the presentation
• So, the fact that we have a brain can be seen

as empirical confirmation of (and thus
evidence for) the view of computationalism.
– Indeed, we know that the nature of the mind changes

when the brain changes (neural dependency). Thus,
maybe (although I’ll reject this analogy later!!!!):

• brain = ‘hardware’
• mind = ‘software’

The Brain is a Computer, Part I

• The brain is unlike any other organ; the
heart, lungs, liver, etc. all do something
very much physical: they collect, filter,
pump, etc.

• The brain, however, is quite different: Its
function seems to be to take in signals, and
send out signals, in communication with the
nervous system.

• But, as such, the brain seems to be an
information-processor: a computer.

Algorithms
• An algorithm is an effective step-by-step procedure:

– During each step, we perform some operation, and move on to
some other step

– Effective: A ‘normal’ human being can ‘follow’ the algorithm, i.e.
at each point it is exactly clear what action to perform, this action
is simple enough for us to perform, and after each step it is clear
which step to take next

– Usually, we require that there be some end to this process.

• Examples:
– Cookbook recipe
– Filling out tax forms
– Furniture assembly
– Long division

Computations

• A computation is a kind of algorithm: a
computation is a symbol-manipulation
algorithm.
– The symbols represent something
– Hence, the computation is about that

something: we compute something
– Example: long division.

• Not every algorithm is a computation
– Example: furniture assembly instructions

Example: Long Division

Computers

• A ‘computer’ is something that computes, i.e.
something that performs a computation.

• Between the 17th and 20th century, a ‘computer’
was understood to be a human being; humans who
computed things!

• It was only by automating (mechanizing) this
process, that we obtained ‘computers’ as we now
think of them.

The Scope and Limits of
Computation

• In 1936, Alan Turing wrote a paper in which he
tried to give an answer to the decision problem in
formal logic: is there a way to decide, for any
arguments expressed in formal logic, whether it is
valid or not?

• Turing thought the answer to the decision problem
was negative: that there is no procedure to tell all
valid arguments from all invalid arguments.

• To prove this, Turing needed to generalize over all
possible computations.

• Turing tried to do this by finding basic elements to
which we can reduce any such process.

States and Symbols

• Take the example of multiplication: we make
marks on any place on the paper, depending on
what other marks there already are, and on what
‘stage’ in the algorithm we are (we can be in the
process of multiplying two digits, adding a bunch
of digits, carrying over).

• So, when going through an algorithm we go
through a series of stages or states that indicate
what we should do next (we should multiply two
digits, we should write a digit, we should carry
over a digit, we should add digits, etc).

A Finite Number of Abstract States

• The stages we are in vary between the different
algorithms we use to solve different problems.

• However, no matter how we characterize these
states, what they ultimately come down to is that
they indicate what symbols to write based on what
symbols there are.

• Hence, all we should be able to do is to be able to
discriminate between different states
– what we call them is completely irrelevant!

• Moreover, although an algorithm can have any
number of stages defined, since we want an
answer after a finite number of steps, there can
only be a finite number of such states.

A Finite Set of Abstract Symbols

• Next, Turing pointed out that the symbols are
abstract as well: whether we use ‘1’ to represent
the number 1, or ‘☺’ to do so, doesn’t matter.

• All that matters is that different symbols can be
used to represent different things.
– What actual symbols we use is irrelevant!

• Also, while we can use any number of symbols,
any finite computation will only deal with a finite
number of symbols. So, all we need is a finite set
of symbols.

A String of Symbols

• While we can write symbols at different places
(e.g. in multiplication we use a 2-dimensional
grid), symbols have a discrete location on the
paper. These discrete locations can be numbered.

• Or, put another way: we should be able to do
whatever we did before by writing the symbols in
one big long (actually, of arbitrarily long size)
string of symbols.

Reading, Writing, and Moving
between Symbols

• During the computation, we write down symbols
on the basis of the presence of other symbols. So,
we need to be able to read and write symbols, but
we also need to get to the right location to read
and write those symbols.

• With one big long symbol string, however, we can
get to any desired location simply by moving left
or right along this symbol string, one symbol at a
time.

Components for Computation

• Turing thus obtained the following basic
components of effective computation:
– A finite set of states
– A finite set of symbols
– One big symbol string of arbitrary size
– An ability to move along this symbol string
– An ability to read a symbol
– An ability to write a symbol

• We call this: a Turing-machine

Turing Machines Demo

Computable Functions

• We can use a Turing-machine to compute the sum,
and product, of any two numbers.

• These functions are therefore Turing-computable

• Lots of other functions are Turing-computable

• E.g. all functions needed to run Microsoft Word
are Turing-computable (i.e. you can run Microsoft
Word on a Turing-machine)

The Church-Turing Thesis

• If a computer of type X can compute a
function f, we say that f is X-computable

• The Church-Turing Thesis:
– No matter what type of computer X you have:

All functions that are X-computable are Turing-
computable.

• In short: Turing-machines can compute

anything that is computable.

0’s and 1’s

• Turing showed how all computation can be done
using a limited number of simple processes
manipulating a small number of symbols.

• Some years later, Claude Shannon showed that all
effective computations can be performed through
the manipulation of bitstrings (strings of 0’s and
1’s) alone.

• You do need lots of these 0’s and 1’s, and you do
need to perform lots of these simple operations.

• But this is exactly how the modern ‘digital
computer’ does things. That is, at the ‘machine
level’, it’s all simple manipulations of 0’s and 1’s.

Physical Dichotomies

• The 0’s and 1’s are just abstractions though;
they need to be physically implemented.

• Thus, you need some kind of physical
dichotomy, e.g. hole in punch card or not,
voltage high or low, quantum spin up or
down, penny on piece of toilet paper or not,
etc.

The Brain is a Computer, Part II

• These theoretic results in information-
processing show that one can obtain
powerful information-processing capacities
using very simple resources … as long as
you have lots of them. Well:
– Our brain has ~1011 neurons
– Our brain has ~1014 neural connections
– Thus, a neuron firing or not could constitute 0’s

and 1’s, and a neuron’s firing as a function of
connected neurons’ firing, could implement the
necessary operations needed for computation.

Causal Topology

• A physical system implements a computer
program if and only if that system implements a
certain causal topology.

• This topology is highly abstract. As long as you
retain the functionality of the parts, and the
connections between the parts, you can:
– Move parts
– Stretch parts
– Replace parts

• This is why there can be mechanical computers,
electronic computers, DNA computers, optical
computers, quantum computers, etc!

The Brain is a Computer, Part III

• Again, it seems to fit:
– The brain implements a complex causal

topology where the only thing that seems to
matter is how the neurons are connected, not
where they are located, what physical material
they are made of, how big they are, how they
are shaped, etc.

– E.g. In case of neural defects, other areas of the
brain can take over their original task

Universal Turing Machines

UTM TM, I TM(I)

Turing proved that there exists a Turing-machine
that can emulate any other Turing-machine

Description of
machine TM
and input I

The output that
machine TM would
give if I would be its
input The Universal Turing Machine

Program as Data
Hardware and Software

• Universal Machines take in programs as data
– Your laptop is a Universal Machine. It runs programs.

• Clear distinction between hardware and software:
– The (universal) machine is hardware
– The program is software
– The machine will function differently depending on the

software that is ‘fed into’ and ‘run on’ it
– Without software running on the hardware, the

hardware does nothing of interest
– The pieces of software are portable: you can take the

software and put it on a different (universal) machine

Mind :: Brain =
 Software :: Hardware?

• This analogy appeals to the idea of physical
reductionism:
– Minds (or aspects of the mind) exist as high-level

abstractions of a working brain
– (somewhat) Similarly, a program (a piece of software)

provides an abstract description of the functionality of a
machine running that program

• However, this is as far as the analogy goes.
– As the next few slides show, there are some very

important dis-analogies between ‘mind’ and ‘software’
(as well as between ‘brain’ and ‘hardware’)

Where the Analogy Breaks Down

• First of all, even if the program is written in a high-level
programming language, it may still not provide the level of
abstraction we use when talking about (and wanting to
explain) the behavior of a machine
– E.g. If the computer makes a mistake, there is usually no line in the

program that says something equivalent to “make mistake now”.
And even when things function just right, the behavior of the
working computer as a whole is at a higher level of description
than the program.

– Similarly, most computationalists state that computations are what
underlie the mind: we can explain mental properties by pointing to
computational properties as physically realized (implemented) by
the brain, but minds still exist at a higher level of abstraction than
those computational descriptions.

Where the Analogy Really
Breaks Down

• The brain is not a piece of hardware that ‘runs’ a mind
– There is nothing similar in the brain to a ‘CPU’ that fetches and

then executes one of an explicit set of instructions
– The brain is not some ‘blank slate’ that’s just ‘sitting there’ when

there is no ‘mind’ running ‘on’ it

• The mind is not a piece of software you ‘stick’ into a brain
– It is not a piece of data; it is not symbol strings
– It doesn’t describe the abstraction; it *is* the abstraction!

• There is no clear separation. Despite what movies depict:
– Brains don’t ‘take in’ a mind ... or some other mind
– Minds aren’t portable entities you can stick into any brain you

want. In fact: no brain -> no mind!

Programming and Reconfiguring

• The brain does reconfigure
– Neural connections get added or removed
– More or less neural resources can be devoted to tasks

• These changes effect what happens at the higher-level of
abstraction where we find ‘minds’
– So the mind does not provide instructions to the brain saying how

it ought to function, but rather is the abstraction that results from a
working brain

• Outside stimuli (such as learning environments) may be
the ultimate cause for these changes
– Hence, if the brain is ‘programmed’ at all, we can say that it is

programmed by its environment. But again, that is not at all what a
mind is: Mind ≠ Software = Program = Instructions

Summary

• Two independent arguments for
computationalism:
– One conceptual: cognition is information-

processing, and that’s exactly what computers
do

– One empirical: the mind seems dependent on
the brain, where the brain seems to be
implementing a causal topology consisting of a
large numbers of simple devices capable of
supporting complex information-processing
capacities

	Computationalism
	Computationalism
	Computationalism and Predictions about Aliens
	Computationalism and the Brain
	The Brain is a Computer, Part I
	Slide Number 6
	Algorithms
	Computations
	Example: Long Division
	Computers
	The Scope and Limits of �Computation
	States and Symbols
	A Finite Number of Abstract States
	A Finite Set of Abstract Symbols
	A String of Symbols
	Reading, Writing, and Moving between Symbols
	Components for Computation
	Turing Machines Demo
	Computable Functions
	The Church-Turing Thesis
	0’s and 1’s
	Physical Dichotomies
	The Brain is a Computer, Part II
	Causal Topology
	The Brain is a Computer, Part III
	Universal Turing Machines
	Program as Data�Hardware and Software
	Mind :: Brain =� Software :: Hardware?
	Where the Analogy Breaks Down
	Where the Analogy Really Breaks Down
	Programming and Reconfiguring
	Summary

