Statistical Reasoning

Critical Thinking

Three Kinds of

Inductive Arguments

- Inductive Generalization:
- From particular to general: A is an X and has property P. B is an X and has property P. ... Therefore, all (most) X's have property P.
- Inductive Syllogism
- From general to particular: Most X's have property P. A is an X. Therefore, A has property P.
- Analogical Reasoning
- From particular to particular: A and B share certain properties. A has property P. Therefore, B has property P .

Inductive Generalizations

- Let's focus on Inductive Generalizations
- Examples:
- All my German friends like sauerkraut. Therefore, all Germans like sauerkraut.
- Of 1500 Americans polled, 35\% like what Obama is doing. Therefore, 35% of all Americans like what Obama is doing

From Samples to Populations

f: Observed frequency in sample = percentage of sample that has property P
p : actual percentage of population that has property P

Inference:
I observe f

Therefore, p is about f

Sample Size and Sample Representativeness

- How good the inference from a sample to a population is depends on 2 things:
- Sample Size: The larger the sample size, the more reliable the inference is.
- Sample Representativeness: The more likely it is that the make-up of the sample is like the make-up of the population, the more reliable the inference is.

The Law of the Big Numbers

- If you flip a coin 10 times, and you get 7 heads (i.e. $f=0.7$), does that surprise you (assume the coin is fair, i.e. $p=0.5$)? What about 70 out of 100? 700 out of 1000 ?
- The Law of the Big Numbers is that the greater the sample size (n), the more likely it is that observed frequency (f) will approximate the actual percentage (p).
- So, if the coin is fair, f is more likely to approximate 0.5 for 1000 flips than for 10.
- Also, conversely, the greater n, the greater the likelihood that, given f, the actual value of p is in the neighborhood of f.
- So, getting 700 heads out of 1000 flips makes it more unlikely that the coin is fair than getting 7 out of 10 .

The Law of the Big Numbers and Our Intuitions

- The qualitative nature of the Law of the Big Numbers coincides with our intuitions.
- However, it is surprising to us how quickly f and p approximate each other as the sample size increases (see two slides from now for exact values).
- Thus, our intuitions are not very good in judging the quantitative nature of the Law of the Big Numbers.
- We use the Margin of Error to quantify this 'likelihood of being in the neighborhood'.

Margin of Error

Given observed frequency f, what can we say about p ?

Let $P(p=x \mid f)$ be the probability that $p=x$ given observed frequency f
p is most likely f, but of course p could also quite likely be a little smaller or a little larger than f

The margin of error is the percentage me such that there is a 95% chance that p is between $f-M E$ and $f+M E$. This interval is called the confidence interval.

The greater the sample size, the more narrow this bell curve becomes (i.e. the smaller ME and hence a greater chance that p is approximately f)

How Margin of Error decreases as function of Sample Size

Sample Size (n)	Margin of Error* (ME)
10	30%
25	22%
50	14%
100	10%
250	6%
500	4%
1000	3%
1500	2%

*These values are using a confidence level of 95%.

How to Use the Margin of Error:

An Example

- Suppose we poll 1,000 Americans and find that 35% likes how Obama is handling the situation in Afghanistan. I.e. $\mathrm{f}=35 \%$ (or 0.35)
- So, the sample size $\mathrm{n}=1,000$, giving a margin of error of 3\% (see table)
- Hence, we can be 95\% certain that the percentage of all Americans that like how Obama is handling the situation in Afghanistan (p) lies somewhere between 32% and 38%.

The Margin of Error is not some

 kind of magical, hard barrier- Some people think that the margin of error gives us a lower and upper bound for the actual percentage, but that is not the case: due to the random nature of picking the sample it is of course still possible (though less than 5\% likely) that the actual percentage is below 32% or above 38%.
- So, we can not say that we can be 100% certain that somewhere between 32\% and 38\% like what Obama is doing in Afghanistan!
- Rather, we say that there is a 95% chance that the actual number (p) lies somewhere between 32% and 38%. Or: we can be 95% confident that it is somewhere in that interval.

Why Polls usually involve some 1,000-2,000 people.

- Still, the above result is surprisingly precise: We have a population of over 300,000,000 Americans, and yet we only need to poll about 1,500 people to get an estimate of p with a margin of error of only 3% !
- Indeed, this is why typical polls use about 1,000 to 2,000 people:
- Apparently, that is going to get one a fairly accurate snapshot of all Americans!
- In fact, going beyond that really doesn't help all that much: polling 1,000,000 Americans really doesn't tell us much more!!
- We could call this the Law of the Not-SoBig Numbers

A Few Technical Notes I

- The values in the table reflect a 95% confidence interval
- If we used a 99\% confidence interval, the margins of error would need to be bigger.
- In general, the greater the confidence we want, the greater the margin of error will be, and hence the weaker (i.e. less interesting) the claim becomes. In particular:
- We can be 100% confident that p is somewhere between 0 and 100\% (duh!)
- We are about approximately 0\% confident that p is exactly f.

A Few Technical Notes II

- The values have been calculated for $f=0.5$.
- The more f deviates from 0.5 , the less accurate the values become.
- Now, they will still work just fine for f being anywhere between 0.2 and 0.8 (and, for reasonably sized n , between 0.1 and 0.9), but once f starts to approximate 0 or 1 , the values become unreliable.
- What happens is that the bell curve will start to get quite skewed for such extreme values.
- Indeed, it doesn't make much sense to say that where $n=100$, and $f=95 \%, p$ will be between 85% and ... 105\%?!

A Few Technical Notes III

- The values have been calculated for a population size of ... infinity!
- So, the Law of the Not-So-Big Numbers is even more surprising: even when the sample is only an infinitely small part than the population we can still obtain highly accurate results about the target population!
- In fact, the smaller the population, the smaller the Margin of Error. Indeed, once the sample starts to become a significant proportion of the population, the listed margins of error become unreliable (as they are too high)!

A Few Technical Notes IV

- Still, as long as the population is significantly larger than the sample (say, 10 times as large or more), the numbers from the table are reliable.
- And, this is what is normally the case, because if the population was only, say, 3 times the size of the sample, then we might as well have observed the population as a whole, rather than just a sample.
- Indeed, under most circumstances the listed numbers are not only reliable, but apparently also independent of the size of the actual population, whether it is 300 thousand, 300 million, 300 billion, or 300 gazillion: in all cases, a 'mere' 1000 size sample gives margin of error of about 3\%!

Other Inductive Arguments

- We've loked at inductive generalizations, but some of the same comments hold for inductive syllogisms and analogical reasoning:
- How many cases are we looking at?
- How representative are those cases?

