
Abacus Machines

An Abacus machine is a (hypothetical) device that has the following components:

1. A finite number of registers R1, …,Rk, each of which can hold an arbitrarily large number
of beads.

2. A program, which is a finite set of instructions.

There are two kinds of instructions for Abacus machines:

1. n+: Add a bead to register Rn, and go to some new instruction.
2. n-: See if there is at least one bead in register Rn. If so, remove one bead from that

register, and go to some new instruction I. If not, do nothing, but go to some instruction J,
where J may be different from I.

While there are a number of differences between Abacus machines and Turing machines, the fact
that Abacus machines do not have any internal states defined, whereas Turing machines do, is not
one of those differences. To see this, notice that Abacus machines need internal states to keep
track of where is it in the program, just like Turing machines do. However, these internal states
are usually not defined as part of an Abacus machine, because the most common way to depict an
Abacus machine is through the use of a flow graph, where each of the nodes represents some
instruction, and where the arrows indicate what the next instruction is going to be (possibly
depending on whether some register is empty or not). Such flow graphs are therefore not unlike
Minsky-style flow graphs for Turing machines. In fact, notice that in the latter flow graphs, there
is no mention of internal states anymore. So, if we wanted to, we could define Turing machines
without any explicit mentioning of any internal states either.

We can also draw a parallel between the cells of a Turing machine and the registers of an Abacus
machine: both are places where we can put something. However, while Turing machines have an
infinite number of cells, Abacus machines have only finitely many. On the other hand, there is
only one of finitely many things that a Turing machine can put into each of its cells (there are
only finitely many symbols), whereas the contents of each register in an Abacus machine is one
of infinitely many possibilities.

Notice that these differences have implications for how each of the machines can be used in an
effective way, all of which are reflected in the nature of the instructions for each of the machines.
In a Turing machine, it is assumed that the contents of a cell can be inspected in one effective
step, but in an Abacus machine, the specific contents of any register (i.e. how many beads are in a
register) cannot be ‘grasped’ in one step. On the other hand, a Turing machine needs to use a head
to effectively deal with its infinite number of cells, but since there are only finitely many registers
in an Abacus machine, the machine can be supposed to be able to directly access any of its
registers.

Example: Emptying, Copying, Adding

Suppose we want to completely empty some register Rn. The following flow graph will do so:

The program will start by following the incoming arrow, and then repeat the instruction n- until
register Rn is empty, in which case the arrow with the e (for empty) is followed at which point
(since this arrow doesn’t point to any instruction) the machine halts. We will write the result of
this flow graph as n ← 0.

The following flow graph adds a number of beads to register Rn that is equal to the number of
beads in register Rm:

We can write the result of this graph as n ← n + m.

The following flow graph copies the number of beads that are in register Rm into register Rn:

In this graph, which can be written as n ← m, the blocks are used to substitute for the
corresponding flow diagrams.

n-

e

m-

n ← 0

n+

e

n ← n + m

Notice that in the last two examples, register Rm will be empty when the machine is done. For that
reason, the last two flow graphs may more accurately be represented as:

If we want to make sure that Rm still has m beads when the machine is finished, we have to do
something else. One easy way to do this is to use a third register, say Rp, which we use to
temporarily store the contents of Rm. For example, the following flow graph would be a possible
flow graph to add the contents of m to n, while keeping the contents of m:

The graph for copying the contents from register Rm to register Rn, while keeping the contents in
register Rm the same is now as follows:

n ← n + m
m ← 0

n ← m
m ← 0

m-

n+

e

p+

p ← 0

p-

m+
e

n ← 0

n ← n + m
m ← m
p ← 0

Abacus Machines and Programming Languages

The nice thing about Abacus machines is that they relate to programming languages much more
so than Turing machines. We already see this in notations like n ← n + m, and the immediately
intuitive use of subroutines. However, we can also write Abacus machine programs in the
following way:

In this notation, the next instruction is always the instruction below, except as indicated otherwise
by an arrow. This is why the n- kind of operation is sometimes referred to as a “decrement or
jump” instruction. Moreover, taking one more simple step, we get the following program, which
resembles the kind of program we are familiar with:

while (p>0) {p-;}
while (m>0) {m-; n+; p+;}
while (p>0) {p-; m+;}

p-

m-
n+

m+

p+

p-

