
[n1, n2, …, nk] denotes the tape configuration
where the tape contains
a block of n1+1 1’s, followed by a 0,
followed by n2+1 1’s, followed by a 0, …
followed by nk+1 1’s, on an otherwise blank
(all 0) tape, and with the head at the leftmost 1

A function f:Nk → N is Turing-computable*
if and only if there exists a Turing machine M
such that for all <n1, n2, …, nk>:
if f(n1, n2, …, nk) = n, then M, when started (in q1)
on [n1, n2, …, nk], will halt (in q0) with [n].

Relative to an enumeration E = M1, M2, …
of Turing-machines, the self-halting function hE:N → N
is the function defined as
hE(n) = 1 if Mn, when started on [n], halts
hE(n) = 0 if Mn, when started on [n], does not halt

Relative to an enumeration E = M1, M2, …
of Turing-machines, the halting function hE:N x N → N
is the function defined as
hE(m,n) = 1 if Mm, when started on [n], halts
hE(m,n) = 0 if Mm, when started on [n], does not halt

For any enumeration E = M1, M2, …
of Turing-machines, the self-halting function
hE:N → N is not Turing-computable*

For any enumeration E = M1, M2, …
of Turing-machines, the halting function
hE:N x N → N is not Turing-computable*

The halting function h:TM x TT → {yes, no}
is the function defined as
h(M,T) = yes if M, when started on T, halts
h(M,T) = no if M, when started on T, does not halt

TM is the set of all Turing-machines

TT is the set of all tape-configurations
(specifying tape content; head position is assumed to be at leftmost 1)

The halting function h:TM x TT → {yes, no}
is not Turing-computable

The halting function h:TM x TT → {yes, no}
is not effectively computable

Every effective encoding of numbers
can be transformed into any other effective
encoding of numbers by some Turing-machine

For any enumeration E = M1, M2, …
of Turing-machines, the halting function
hE:N x N → N is not Turing-computable

Every effective encoding [M,T]
where T = [n] can be transformed
into [m,n] relative to any enumeration
E = M1, M2, … of Turing-machines

Turing’s Thesis: every effectively
computable function is
Turing-computable

+

+

+

The halting function is not computable

The Halting Problem:
Given any Turing-machine M
and tape-configuration T,
can we decide whether
M halts on T or not?

There are no such things
as ‘non-effective computations’
(e.g. accelerated Turing-machines)

+

The halting function h:TM x TT → {yes, no} is MM-computable
if and only if there exists an effective symbol-manipulating
algorithm (i.e. computation, program, or machine) H of kind MM,
such that for any M and T: H starts on [M,T], and halts on [yes] or [no],
depending on whether M with T halts or does not halt respectively.

Given some computational method, an effective encoding maps
any x ∈ X to a representation [x] that that kind of computational
method can work on.

‘Effective’ = can be performed
by a human

Other methods to try and
solve the halting problem
(e.g. divine revelation) don’t exist

+

The Halting Problem is not solvable

	Slide Number 1

