
[n1, n2, …, nk] denotes the tape configuration 
where the tape contains 
a block of n1+1 1’s, followed by a 0, 
followed by n2+1 1’s, followed by a 0, … 
followed by nk+1 1’s, on an otherwise blank 
(all 0) tape, and with the head at the leftmost 1 

A function f:Nk → N is Turing-computable* 
if and only if there exists a Turing machine M 
such that for all <n1, n2, …, nk>:  
if f(n1, n2, …, nk) = n, then M, when started (in q1)  
on [n1, n2, …, nk], will halt (in q0) with [n]. 

Relative to an enumeration E = M1, M2, …  
of Turing-machines, the self-halting function hE:N → N  
is the function defined as 
hE(n) = 1 if Mn, when started on [n], halts 
hE(n) = 0 if Mn, when started on [n], does not halt 

Relative to an enumeration E = M1, M2, …  
of Turing-machines, the halting function hE:N x N → N  
is the function defined as 
hE(m,n) = 1 if Mm, when started on [n], halts 
hE(m,n) = 0 if Mm, when started on [n], does not halt 

For any enumeration E = M1, M2, …  
of Turing-machines, the self-halting function 
hE:N → N is not Turing-computable* 

For any enumeration E = M1, M2, …  
of Turing-machines, the halting function 
hE:N x N → N is not Turing-computable* 

The halting function h:TM x TT → {yes, no}  
is the function defined as 
h(M,T) = yes if M, when started on T, halts 
h(M,T) = no if M, when started on T, does not halt 

TM is the set of all Turing-machines 

TT is the set of all tape-configurations  
(specifying tape content; head position is assumed to be at leftmost 1) 

The halting function h:TM x TT → {yes, no}  
is not Turing-computable 

The halting function h:TM x TT → {yes, no}  
is not effectively computable 

Every effective encoding of numbers 
can be transformed into any other effective 
encoding of numbers by some Turing-machine  

For any enumeration E = M1, M2, …  
of Turing-machines, the halting function 
hE:N x N → N is not Turing-computable 

Every effective encoding [M,T] 
where T = [n] can be transformed  
into [m,n] relative to any enumeration 
E = M1, M2, … of Turing-machines 

Turing’s Thesis: every effectively 
computable function is  
Turing-computable 

+ 

+ 

+ 

The halting function is not computable 

The Halting Problem: 
Given any Turing-machine M  
and tape-configuration T, 
can we decide whether  
M halts on T or not? 

There are no such things  
as ‘non-effective computations’  
(e.g. accelerated Turing-machines) 

+ 

The halting function h:TM x TT → {yes, no} is MM-computable  
if and only if there exists an effective symbol-manipulating 
algorithm (i.e. computation, program, or machine) H of kind MM, 
such that for any M and T: H starts on [M,T], and halts on [yes] or [no],  
depending on whether M with T halts or does not halt respectively. 

Given some computational method, an effective encoding maps  
any x ∈ X to a representation [x] that that kind of computational  
method can work on. 

‘Effective’ = can be performed 
by a human 

Other methods to try and  
solve the halting problem  
(e.g. divine revelation) don’t exist 

+ 

The Halting Problem is not solvable 
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