Godel’s Incompleteness Theorem

Part |: Arithmetization

Godel Numbering

e Let’s assign a natural number to FOL
expressions such that we can recover the

object from the encoding.
e This can be done in many different ways.

Godel Numbering Scheme 1

Atomic variables Constants
V V
(- 3 |= Xo» P. | P, |- fo | fo
) A v X, | P, | P f. | f.
, \% 1 X5,
_)
TS
1 2 3 4 5 6 68 7 78
19 29 39 59 69 689 79 789
199 | 299 399 599 (699 |6899 799 | 7899
2999
29999

Just concatenate the numbers of each symbol to get number of any expression

E.g. PA3: Vx x + 0 = x (which is really Vx =(+(x,0),x)) has Gédel number
3954178815199719199519

Godel Numbering Scheme 2

(— = = X P.n f.n
) A \v/
, \% 1
N
<>
1 7 17 23 2*3 22%3n*5i | 23*3n*Gi
3 9 19
5 11 21
13
15

E.g. the Godel number for O is 8.

For expressions, use prime coding of sequence of numbers, whose entries are the
Godel numbers of the symbols of the expression.

E.g. the Godel number for the expression 0 = 0 (which is =(0,0)) is

26 * 323* 51 * 78 * 115 * 138 * 173

Claim: The Set of all FOL formulas
(and of all FOL sentences) is Recursive
e By this we mean that the set of Gddel

numbers of all FOL formulas (sentences) is
recursive.

Church-Turing Thesis

The straightforward way to ‘prove’ the claim is by
making an appeal to the Church-Turing Thesis.

That is, it’s perfectly clear to us that there exists
computer programs that can decide whether some
string of symbols is a well-formed formula or

sentence of FOL (assuming Fitch has no bugs, there is
onel).

So, by Church-Turing Thesis, there is a Turing-
machine that can decide ‘wff-hood’ and ‘sentence-
hood’, and hence the sets are indeed recursive.

But we don’t need to make such a ‘lazy’ appeal.

Cryptographic Functions

First, some functions dealing with the codings of strings of symbols.
Where #s is the Godel number of symbol string s:
len(#s) = length of s

— This is recursive, since len(x) = lo(x,2)
ent(#s,i) = i-th entry of s

— ent(s,i) = lo(s,m(i)) (remember, 3 is ‘15 prime)
last(#s) = last entry of s
conc(#s,#r) = #(concatenation of s and r)
ext(#s,a) = #(s with a added at the end)
pre(#s,a) = #(s with a added at the beginning)
sub(#s, c, d) = #(s with all entries c replaced by d)
Proof that last 5 functions are recursive is left as HW.

Primitive Syntactical Properties

e Define LeftParen(x) = x is the code of a left
oarenthesis
e LeftParen(x) is recursive, since LeftParen(x) iff x =
1
e Similarly, the following sets are all recursive:
— RightParen(x) iff x is code of a right parenthesis
— Commal(x) iff x is the code of a comma

— Neg(x) iff x is the code of a negation symbol
— Conj(x) iff x is the code of a conjunction symbol

Primitive Syntactical Properties

e Prec
orec

e Prec

icate(x) = {x | x is the code number of a
icate symbol}

icate(x) is recursive, since Predicate(x) iff

Jill x Inll x x = 22*3n*5;
e Similarly, the following sets are all recursive:

— N-

place-Predicate(x,n) iff x is code of n-place predicate

— Variable(x) iff x is the code of a variable

— Constant(x) iff x is the code of a constant

— AtomicTerm(x) iff x is the code of an atomic term

Formation Sequences

e A complex term can be represented by a formation sequence:
a sequence of expressions where each entry is either an
atomic term or the application of a (n-place) function symbol
to (n) earlier entries of the formation sequence.

— E.g.s(0)*(s(0) * 0):

e 1.0 atomic
e 2.5(0) sl

e 3.5(0)*0 *2,1

e 4.5(0) * (s(0) * 0) *2,3

 We can code this sequence of expressions the way we code
other sequences: use prime encoding where each entry is the
code of the expression belonging to that entry.

 The code of this sequence will be the code of the term

Term

Term(x) iff x is the code of a term is recursive:
— ComplexTerm(x) iff Inl x

len(x)=n A
Vi< n 3yllxy=ent(x,i+1) A
dmllen(y)
n-place-function(ent(y,1),m) A
LeftParen(ent(y,2)) A
RecursiveConc(x,y,m) A
RightParen(last(y))
— RecursiveConc(x,y,m) iff y is a concatenation of m symbol strings
occuring in sequence x, separated by comma’s iff
(m =1 A 3Inllen(x) ent(x,n) =y) v
(1 <m A 3vlly Iwlly Inllen(x) ent(x,n) = v A RecursiveConc(x,w,m-1)
Ay =conc(z,pre(5,w)))
— Term(x) iff AtomicTerm(x) v ComplexTerm(x)

Atomic Formulas

e AtomicFormula(x) iff x is the code of an atomic
formula is recursive as well (assuming no function
symbols (i.e. not complex terms) and no identity
symbol)

— AtomicFormula(x) iff 3nll len(x)
len(x) =2*n+2 A
N-place-Predicate(ent(x,1),n) A
LeftParen(ent(x,2)) A
Vi< n AtomicTerm(ent(x,2*(i+1)+1)) A
Vi< n-1 Commal(ent(x,2*(i+1)+2)) A
RightParen(last(x))

	Gödel’s Incompleteness Theorem��Part I: Arithmetization
	Gödel Numbering
	Gödel Numbering Scheme 1
	Gödel Numbering Scheme 2
	Claim: The Set of all FOL formulas �(and of all FOL sentences) is Recursive
	Church-Turing Thesis
	Cryptographic Functions
	Primitive Syntactical Properties
	Primitive Syntactical Properties
	Formation Sequences
	Term
	Atomic Formulas

