
Gödel’s Incompleteness Theorem

Part I: Arithmetization

Computability and Logic

Gödel Numbering

• Let’s assign a natural number to FOL
expressions such that we can recover the
object from the encoding.

• This can be done in many different ways.

Gödel Numbering Scheme 1

(
)
,

¬
∧
∨
→
↔

∃
∀
⊥

= x0,
x1,
x2,
…

…

…

…

…

…

…

1
19
199

2
29
299
2999
29999

3
39
399

4 5
59
599
…

6
69
699
…

68
689
6899
…

… 7
79
799
…

78
789
7899
…

…

P0
0

P0
1

P1
0

P1
1

f 0
0

f 0
1

f 1
0

f 1
1

E.g. PA3: ∀x x + 0 = x (which is really ∀x =(+(x,0),x)) has Gödel number
3954178815199719199519

Just concatenate the numbers of each symbol to get number of any expression

Constants Atomic variables

Gödel Numbering Scheme 2

(
)
,

¬
∧
∨
→
↔

∃
∀
⊥

= xi

1
3
5

7
9
11
13
15

17
19
21

23 2*3i 22*3n*5i 23*3n*5i

Pn
i f n

i

E.g. the Gödel number for 0 is 8.
For expressions, use prime coding of sequence of numbers, whose entries are the
Gödel numbers of the symbols of the expression.
E.g. the Gödel number for the expression 0 = 0 (which is =(0,0)) is
26 * 323* 51 * 78 * 115 * 138 * 173

Claim: The Set of all FOL formulas
(and of all FOL sentences) is Recursive

• By this we mean that the set of Gödel
numbers of all FOL formulas (sentences) is
recursive.

Church-Turing Thesis

• The straightforward way to ‘prove’ the claim is by
making an appeal to the Church-Turing Thesis.

• That is, it’s perfectly clear to us that there exists
computer programs that can decide whether some
string of symbols is a well-formed formula or
sentence of FOL (assuming Fitch has no bugs, there is
one!).

• So, by Church-Turing Thesis, there is a Turing-
machine that can decide ‘wff-hood’ and ‘sentence-
hood’, and hence the sets are indeed recursive.

• But we don’t need to make such a ‘lazy’ appeal.

Cryptographic Functions
• First, some functions dealing with the codings of strings of symbols.
• Where #s is the Gödel number of symbol string s:
• len(#s) = length of s

– This is recursive, since len(x) = lo(x,2)
• ent(#s,i) = i-th entry of s

– ent(s,i) = lo(s,π(i)) (remember, 3 is ‘1st’ prime)
• last(#s) = last entry of s
• conc(#s,#r) = #(concatenation of s and r)
• ext(#s,a) = #(s with a added at the end)
• pre(#s,a) = #(s with a added at the beginning)
• sub(#s, c, d) = #(s with all entries c replaced by d)
• Proof that last 5 functions are recursive is left as HW.

Primitive Syntactical Properties

• Define LeftParen(x) = x is the code of a left
parenthesis

• LeftParen(x) is recursive, since LeftParen(x) iff x =
1

• Similarly, the following sets are all recursive:
– RightParen(x) iff x is code of a right parenthesis
– Comma(x) iff x is the code of a comma
– Neg(x) iff x is the code of a negation symbol
– Conj(x) iff x is the code of a conjunction symbol
– …

Primitive Syntactical Properties

• Predicate(x) = {x | x is the code number of a
predicate symbol}

• Predicate(x) is recursive, since Predicate(x) iff
∃i� x ∃n� x x = 22*3n*5i

• Similarly, the following sets are all recursive:
– N-place-Predicate(x,n) iff x is code of n-place predicate
– Variable(x) iff x is the code of a variable
– Constant(x) iff x is the code of a constant
– AtomicTerm(x) iff x is the code of an atomic term

Formation Sequences

• A complex term can be represented by a formation sequence:
a sequence of expressions where each entry is either an
atomic term or the application of a (n-place) function symbol
to (n) earlier entries of the formation sequence.
– E.g. s(0)*(s(0) * 0):

• 1. 0 atomic
• 2. s(0) s 1
• 3. s(0) * 0 * 2,1
• 4. s(0) * (s(0) * 0) * 2,3

• We can code this sequence of expressions the way we code
other sequences: use prime encoding where each entry is the
code of the expression belonging to that entry.

• The code of this sequence will be the code of the term

Term
• Term(x) iff x is the code of a term is recursive:

– ComplexTerm(x) iff ∃n� x
len(x) = n ∧
∀i < n ∃y� x y = ent(x,i+1) ∧
 ∃m� len(y)
 n-place-function(ent(y,1),m) ∧
 LeftParen(ent(y,2)) ∧
 RecursiveConc(x,y,m) ∧
 RightParen(last(y))

– RecursiveConc(x,y,m) iff y is a concatenation of m symbol strings
occuring in sequence x, separated by comma’s iff

(m = 1 ∧ ∃n� len(x) ent(x,n) = y) ∨
 (1 < m ∧ ∃v� y ∃w� y ∃n� len(x) ent(x,n) = v ∧ RecursiveConc(x,w,m-1)

 ∧ y = conc(z,pre(5,w)))
– Term(x) iff AtomicTerm(x) ∨ ComplexTerm(x)

Atomic Formulas

• AtomicFormula(x) iff x is the code of an atomic
formula is recursive as well (assuming no function
symbols (i.e. not complex terms) and no identity
symbol)
– AtomicFormula(x) iff ∃n� len(x)

len(x) = 2*n + 2 ∧
N-place-Predicate(ent(x,1),n) ∧
LeftParen(ent(x,2)) ∧
∀i < n AtomicTerm(ent(x,2*(i+1)+1)) ∧
∀i < n-1 Comma(ent(x,2*(i+1)+2)) ∧
RightParen(last(x))

	Gödel’s Incompleteness Theorem��Part I: Arithmetization
	Gödel Numbering
	Gödel Numbering Scheme 1
	Gödel Numbering Scheme 2
	Claim: The Set of all FOL formulas �(and of all FOL sentences) is Recursive
	Church-Turing Thesis
	Cryptographic Functions
	Primitive Syntactical Properties
	Primitive Syntactical Properties
	Formation Sequences
	Term
	Atomic Formulas

