
Gödel’s Incompleteness Theorem 
 

Part I: Arithmetization 

Computability and Logic 



Gödel Numbering 

• Let’s assign a natural number to FOL 
expressions such that we can recover the 
object from the encoding. 

• This can be done in many different ways. 
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E.g. PA3: ∀x x + 0 = x (which is really ∀x =(+(x,0),x) ) has Gödel number   
3954178815199719199519 

Just concatenate the numbers of each symbol to get number of any expression 

Constants Atomic variables 



Gödel Numbering Scheme 2 
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E.g. the Gödel number for 0 is 8. 
For expressions, use prime coding of sequence of numbers, whose entries are the  
Gödel numbers of the symbols of the expression. 
E.g. the Gödel number for the expression 0 = 0 (which is =(0,0) ) is 
26 * 323* 51 * 78 * 115 * 138 * 173 



Claim: The Set of all FOL formulas  
(and of all FOL sentences) is Recursive 

• By this we mean that the set of Gödel 
numbers of all FOL formulas (sentences) is 
recursive. 



Church-Turing Thesis 

• The straightforward way to ‘prove’ the claim is by 
making an appeal to the Church-Turing Thesis. 

• That is, it’s perfectly clear to us that there exists 
computer programs that can decide whether some 
string of symbols is a well-formed formula or 
sentence of FOL (assuming Fitch has no bugs, there is 
one!). 

• So, by Church-Turing Thesis, there is a Turing-
machine that can decide ‘wff-hood’ and ‘sentence-
hood’, and hence the sets are indeed recursive. 

• But we don’t need to make such a ‘lazy’ appeal. 



Cryptographic Functions 
• First, some functions dealing with the codings of strings of symbols. 
• Where #s is the Gödel number of symbol string s: 
• len(#s) = length of s 

– This is recursive, since len(x) = lo(x,2) 
• ent(#s,i) = i-th entry of s 

– ent(s,i) = lo(s,π(i)) (remember, 3 is ‘1st’ prime) 
• last(#s) = last entry of s 
• conc(#s,#r) = #(concatenation of s and r) 
• ext(#s,a) = #(s with a added at the end) 
• pre(#s,a) = #(s with a added at the beginning) 
• sub(#s, c, d) = #(s with all entries c replaced by d) 
• Proof that last 5 functions are recursive is left as HW. 

 



Primitive Syntactical Properties 

• Define LeftParen(x) = x is the code of a left 
parenthesis 

• LeftParen(x) is recursive, since LeftParen(x) iff x = 
1 

• Similarly, the following sets are all recursive: 
– RightParen(x) iff x is code of a right parenthesis 
– Comma(x) iff x is the code of a comma 
– Neg(x) iff x is the code of a negation symbol 
– Conj(x) iff x is the code of a conjunction symbol 
– … 



Primitive Syntactical Properties 

• Predicate(x) = {x | x is the code number of a 
predicate symbol} 

• Predicate(x) is recursive, since Predicate(x) iff 
∃i� x ∃n� x x = 22*3n*5i 

• Similarly, the following sets are all recursive: 
– N-place-Predicate(x,n) iff x is code of n-place predicate 
– Variable(x) iff x is the code of a variable 
– Constant(x) iff x is the code of a constant 
– AtomicTerm(x) iff x is the code of an atomic term 



Formation Sequences 

• A complex term can be represented by a formation sequence: 
a sequence of expressions where each entry is either an 
atomic term or the application of a (n-place) function symbol 
to (n) earlier entries of the formation sequence. 
– E.g. s(0)*(s(0) * 0): 

• 1. 0   atomic 
• 2. s(0)   s 1 
• 3. s(0) * 0  * 2,1 
• 4. s(0) * (s(0) * 0) * 2,3 

• We can code this sequence of expressions the way we code 
other sequences: use prime encoding where each entry is the 
code of the expression belonging to that entry. 

• The code of this sequence will be the code of the term 



Term 
• Term(x) iff x is the code of a term is recursive: 

– ComplexTerm(x) iff ∃n� x  
len(x) = n ∧ 
∀i < n ∃y� x y = ent(x,i+1) ∧ 
 ∃m� len(y) 
   n-place-function(ent(y,1),m) ∧ 
   LeftParen(ent(y,2)) ∧ 
   RecursiveConc(x,y,m) ∧ 
   RightParen(last(y)) 

– RecursiveConc(x,y,m) iff y is a concatenation of m symbol strings 
occuring in sequence x, separated by comma’s iff  

(m = 1 ∧ ∃n� len(x) ent(x,n) = y) ∨  
  (1 < m ∧ ∃v� y ∃w� y ∃n� len(x) ent(x,n) = v ∧ RecursiveConc(x,w,m-1) 

 ∧ y = conc(z,pre(5,w))) 
– Term(x) iff AtomicTerm(x) ∨ ComplexTerm(x) 

 
 



Atomic Formulas 

• AtomicFormula(x) iff x is the code of an atomic 
formula is recursive as well (assuming no function 
symbols (i.e. not complex terms) and no identity 
symbol) 
– AtomicFormula(x) iff ∃n� len(x) 

len(x) = 2*n + 2 ∧ 
N-place-Predicate(ent(x,1),n) ∧ 
LeftParen(ent(x,2)) ∧ 
∀i < n AtomicTerm(ent(x,2*(i+1)+1)) ∧ 
∀i < n-1 Comma(ent(x,2*(i+1)+2)) ∧ 
RightParen(last(x)) 
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