Gödel's Incompleteness Theorem

Part I: Arithmetization

Computability and Logic

Gödel Numbering

- Let's assign a natural number to FOL expressions such that we can recover the object from the encoding.
- This can be done in many different ways.

Gödel Numbering Scheme 1

					Atomic variables ↓			Constants ↓		
() ,	$\neg \\ \land \\ \lor \\ \rightarrow \\ \leftrightarrow$	∃ ∀ ⊥	=	x ₀ , x ₁ , x ₂ , 	\mathbf{P}_{0}^{0} \mathbf{P}_{1}^{0} 	\mathbf{P}_{0}^{1} \mathbf{P}_{1}^{1} 		f ^o ₀ f ^o ₁ 	f ¹ ₀ f ¹ ₁ 	
1 19 199	2 29 299 2999 29999	3 39 399	4	5 59 599 	6 69 699 	68 689 6899 		7 79 799 	78 789 7899 	

Just concatenate the numbers of each symbol to get number of any expression

E.g. PA3: ∀x x + 0 = x (which is really ∀x =(+(x,0),x)) has Gödel number 3954178815199719199519

Gödel Numbering Scheme 2

() ,	$ \begin{array}{c} \neg \\ \land \\ \lor \\ \rightarrow \\ \leftrightarrow \end{array} $	E A T	=	x _i	\mathbf{P}_{i}^{n}	f ⁿ _i
1 3 5	7 9 11 13 15	17 19 21	23	2*3 ⁱ	2 ² *3 ⁿ *5 ⁱ	2 ³ *3 ⁿ *5 ⁱ

E.g. the Gödel number for 0 is 8.

For expressions, use prime coding of sequence of numbers, whose entries are the Gödel numbers of the symbols of the expression.

```
E.g. the Gödel number for the expression 0 = 0 (which is =(0,0)) is
```

```
2^6 * 3^{23*} 5^1 * 7^8 * 11^5 * 13^8 * 17^3
```

Claim: The Set of all FOL formulas (and of all FOL sentences) is Recursive

 By this we mean that the set of Gödel numbers of all FOL formulas (sentences) is recursive.

Church-Turing Thesis

- The straightforward way to 'prove' the claim is by making an appeal to the Church-Turing Thesis.
- That is, it's perfectly clear to us that there exists computer programs that can decide whether some string of symbols is a well-formed formula or sentence of FOL (assuming Fitch has no bugs, there is one!).
- So, by Church-Turing Thesis, there is a Turingmachine that can decide 'wff-hood' and 'sentencehood', and hence the sets are indeed recursive.
- But we don't need to make such a 'lazy' appeal.

Cryptographic Functions

- First, some functions dealing with the codings of strings of symbols.
- Where #s is the Gödel number of symbol string s:
- len(#s) = length of s
 - This is recursive, since len(x) = lo(x,2)
- ent(#s,i) = i-th entry of s
 - ent(s,i) = lo(s, π (i)) (remember, 3 is '1st' prime)
- last(#s) = last entry of s
- conc(#s,#r) = #(concatenation of s and r)
- ext(#s,a) = #(s with a added at the end)
- pre(#s,a) = #(s with a added at the beginning)
- sub(#s, c, d) = #(s with all entries c replaced by d)
- Proof that last 5 functions are recursive is left as HW.

Primitive Syntactical Properties

- Define LeftParen(x) = x is the code of a left parenthesis
- LeftParen(x) is recursive, since LeftParen(x) iff x =
- Similarly, the following sets are all recursive:
 - RightParen(x) iff x is code of a right parenthesis
 - Comma(x) iff x is the code of a comma
 - Neg(x) iff x is the code of a negation symbol
 - Conj(x) iff x is the code of a conjunction symbol

Primitive Syntactical Properties

- Predicate(x) = {x | x is the code number of a predicate symbol}
- Predicate(x) is recursive, since Predicate(x) iff $\exists i \square x \exists n \square x x = 2^{2*}3^{n*}5^{i}$
- Similarly, the following sets are all recursive:
 - N-place-Predicate(x,n) iff x is code of n-place predicate
 - Variable(x) iff x is the code of a variable
 - Constant(x) iff x is the code of a constant
 - AtomicTerm(x) iff x is the code of an atomic term

Formation Sequences

- A complex term can be represented by a formation sequence: a sequence of expressions where each entry is either an atomic term or the application of a (n-place) function symbol to (n) earlier entries of the formation sequence.
 - E.g. $s(0)^*(s(0) * 0)$:
 - 1.0 atomic
 - 2. s(0) s 1
 - 3. s(0) * 0 * 2,1
 - 4. s(0) * (s(0) * 0) * 2,3
- We can code this sequence of expressions the way we code other sequences: use prime encoding where each entry is the code of the expression belonging to that entry.
- The code of this sequence will be the code of the term

Term

- Term(x) iff x is the code of a term is recursive:
 - ComplexTerm(x) iff $\exists n \Box x$

```
len(x) = n \land
```

```
\forall i < n \exists y \exists x y = ent(x,i+1) \land
```

```
∃m□len(y)
```

```
n-place-function(ent(y,1),m) \land
```

```
LeftParen(ent(y,2)) <
```

```
RecursiveConc(x,y,m) \land
```

```
RightParen(last(y))
```

 RecursiveConc(x,y,m) iff y is a concatenation of m symbol strings occuring in sequence x, separated by comma's iff

 $(m = 1 \land \exists n \square len(x) ent(x,n) = y) \lor$

 $(1 < m \land \exists v \Box y \exists w \Box y \exists n \Box len(x) ent(x,n) = v \land RecursiveConc(x,w,m-1) \land y = conc(z,pre(5,w)))$

Term(x) iff AtomicTerm(x) \varsis ComplexTerm(x)

Atomic Formulas

- AtomicFormula(x) iff x is the code of an atomic formula is recursive as well (assuming no function symbols (i.e. not complex terms) and no identity symbol)
 - AtomicFormula(x) iff $\exists n \Box$ len(x)

```
len(x) = 2*n + 2 \land
```

N-place-Predicate(ent(x,1),n) \land

LeftParen(ent(x,2)) \land

 $\forall i < n AtomicTerm(ent(x,2*(i+1)+1)) \land$

∀i < n-1 Comma(ent(x,2*(i+1)+2)) ∧

RightParen(last(x))