Gödel's Incompleteness Theorem

Part I: Arithmetization

Computability and Logic

Gödel Numbering

- Let's assign a natural number to FOL expressions such that we can recover the object from the encoding.
- This can be done in many different ways.

Gödel Numbering Scheme 1

				Atomic variables \downarrow				Constants		
)	$\stackrel{\rightharpoonup}{\neg} \stackrel{\rightharpoonup}{\wedge}$	$\begin{aligned} & \exists \\ & \forall \\ & \perp \end{aligned}$	=	$\begin{aligned} & \mathrm{x}_{0}, \\ & \mathrm{x}_{1}, \\ & \mathrm{x}_{2}, \end{aligned}$		P ${ }_{0}^{1}$ \mathbf{P}_{1}^{1} \ldots.	...	\ldots	\mathbf{f}_{0}^{1} \mathbf{f}_{1}^{1} \cdots	...
$\begin{aligned} & \hline 1 \\ & 19 \\ & 199 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 29 \\ 299 \\ 2999 \\ 29999 \end{array}$	$\begin{array}{\|l\|} \hline 3 \\ 39 \\ 399 \end{array}$	4	$\begin{array}{\|l\|} \hline 5 \\ 59 \\ 599 \end{array}$	$\begin{array}{\|l\|} \hline 6 \\ 69 \\ 699 \end{array}$	$\begin{array}{\|l\|} \hline 68 \\ 689 \\ 6899 \end{array}$...	$\begin{array}{\|l\|} \hline 7 \\ 79 \\ 799 \end{array}$	$\begin{aligned} & 78 \\ & 789 \\ & 7899 \end{aligned}$...

Just concatenate the numbers of each symbol to get number of any expression E.g. PA3: $\forall x x+0=x$ (which is really $\forall x=(+(x, 0), x)$) has Gödel number 3954178815199719199519

Gödel Numbering Scheme 2

)	$\begin{aligned} & \neg \\ & \wedge \\ & \vee \\ & \rightarrow \\ & \leftrightarrow \end{aligned}$	$\begin{aligned} & \exists \\ & \forall \\ & \perp \end{aligned}$	$=$	x_{i}	$\mathbf{P}_{\text {i }}$	$\mathrm{f}_{\mathrm{i}}^{\mathrm{n}}$
1 3 5	$\begin{aligned} & 7 \\ & 9 \\ & 11 \\ & 13 \\ & 15 \end{aligned}$	$\begin{aligned} & 17 \\ & 19 \\ & 21 \end{aligned}$	23	$2 * 3$	$2^{2 *} 3^{n *} 5^{i}$	$2^{3 *} 3^{n *} 5^{i}$

E.g. the Gödel number for 0 is 8 .

For expressions, use prime coding of sequence of numbers, whose entries are the Gödel numbers of the symbols of the expression.
E.g. the Gödel number for the expression $0=0$ (which is $=(0,0)$) is
$2^{6 *} 3^{23 *} 5^{1 *} 7^{8 *} 11^{5} * 13^{8 *} 17^{3}$

Claim: The Set of all FOL formulas (and of all FOL sentences) is Recursive

- By this we mean that the set of Gödel numbers of all FOL formulas (sentences) is recursive.

Church-Turing Thesis

- The straightforward way to 'prove' the claim is by making an appeal to the Church-Turing Thesis.
- That is, it's perfectly clear to us that there exists computer programs that can decide whether some string of symbols is a well-formed formula or sentence of FOL (assuming Fitch has no bugs, there is one!).
- So, by Church-Turing Thesis, there is a Turingmachine that can decide 'wff-hood' and 'sentencehood', and hence the sets are indeed recursive.
- But we don't need to make such a 'lazy' appeal.

Cryptographic Functions

- First, some functions dealing with the codings of strings of symbols.
- Where \#s is the Gödel number of symbol string s :
- len(\#s) = length of s
- This is recursive, since $\operatorname{len}(x)=\operatorname{lo}(x, 2)$
- ent(\#s,i) $=\mathrm{i}$-th entry of s
- ent(s,i) $=\operatorname{lo}\left(s, \pi(i)\right.$) (remember, 3 is ' $1^{\text {st' }}$ prime)
- last(\#s) = last entry of s
- conc(\#s,\#r) = \#(concatenation of s and r)
- $\operatorname{ext}(\# s, a)=\#(s$ with a added at the end)
- pre(\#s,a) = \#(s with a added at the beginning)
- sub(\#s, c, d) = \#(s with all entries c replaced by d)
- Proof that last 5 functions are recursive is left as HW.

Primitive Syntactical Properties

- Define LeftParen $(x)=x$ is the code of a left parenthesis
- LeftParen (x) is recursive, since LeftParen (x) iff $x=$ 1
- Similarly, the following sets are all recursive:
- RightParen(x) iff x is code of a right parenthesis
- Comma(x) iff x is the code of a comma
$-\operatorname{Neg}(x)$ iff x is the code of a negation symbol
$-\operatorname{Conj}(x)$ iff x is the code of a conjunction symbol - ...

Primitive Syntactical Properties

- Predicate $(x)=\{x \mid x$ is the code number of a predicate symbol\}
- Predicate(x) is recursive, since Predicate(x) iff $\exists i \nabla x \exists n \square \times x=2^{2 *} 3^{n *} 5^{i}$
- Similarly, the following sets are all recursive:
- N-place-Predicate (x, n) iff x is code of n-place predicate
- Variable(x) iff x is the code of a variable
- Constant(x) iff x is the code of a constant
- AtomicTerm(x) iff x is the code of an atomic term

Formation Sequences

- A complex term can be represented by a formation sequence: a sequence of expressions where each entry is either an atomic term or the application of a (n-place) function symbol to (n) earlier entries of the formation sequence.
- E.g.s(0)*(s(0) * 0):
- 1.0 atomic
- 2. $s(0)$
s 1
- 3. $s(0) * 0 \quad * 2,1$
- 4. $s(0) *(s(0) * 0) \quad * 2,3$
- We can code this sequence of expressions the way we code other sequences: use prime encoding where each entry is the code of the expression belonging to that entry.
- The code of this sequence will be the code of the term

Tern

- Term(x) iff x is the code of a term is recursive:
- ComplexTerm(x) iff $\exists \mathrm{nl} \mathrm{x}$

```
    len(x)=n^
    i< n \existsy|x y = ent(x,i+1)^
        \existsm\len(y)
        n-place-function(ent(y,1),m)^
        LeftParen(ent(y,2)) ^
        RecursiveConc(x,y,m) ^
        RightParen(last(y))
```

- RecursiveConc(x, y, m) iff y is a concatenation of m symbol strings occuring in sequence x, separated by comma's iff

$$
(m=1 \wedge \exists n \square \operatorname{len}(x) \operatorname{ent}(x, n)=y) \vee
$$

$$
(1<m \wedge \exists v \square y \exists w \square \exists \exists n] \operatorname{len}(x) \text { ent }(x, n)=v \wedge \operatorname{RecursiveConc}(x, w, m-1)
$$

$$
\wedge y=\operatorname{conc}(z, \operatorname{pre}(5, w)))
$$

- Term(x) iff AtomicTerm(x) \vee ComplexTerm(x)

Atomic Formulas

- AtomicFormula(x) iff x is the code of an atomic formula is recursive as well (assuming no function symbols (i.e. not complex terms) and no identity symbol)
- AtomicFormula(x) iff $\exists \mathrm{n} \square$ len(x)
$\operatorname{len}(x)=2^{*} n+2 \wedge$
N-place-Predicate(ent(x,1),n) ^
LeftParen(ent(x,2)) ^
$\forall \mathrm{i}<\mathrm{n}$ AtomicTerm(ent($\left.\left.\mathrm{x}, 2^{*}(\mathrm{i}+1)+1\right)\right) \wedge$
$\forall \mathrm{i}<\mathrm{n}-1 \operatorname{Comma}\left(\operatorname{ent}\left(\mathrm{x}, 2^{*}(\mathrm{i}+1)+2\right)\right) \wedge$
RightParen(last(x))

