
Existential Graphs

Computability and Logic

Existential Graphs

• A graphical logic system developed by C.S. Peirce
almost 100 years ago.

• Peirce studied semiotics: the relationship between
symbols, meanings, and users.
– Peirce stressed the power of iconic representations
– Existential Graphs allow the user to express logical

statements in a completely graphical way.
• Alpha (Propositional Logic)
• Beta (Predicate Logic)
• Gamma (Modal Logic)

Alpha

• Alpha is the part of Existential Graphs (EG)
corresponding to propositional (or truth-
functional) logic (PL).

• This presentation covers:
– symbolization

• from PL to EG
• from EG to PL

– inference
• rules
• Strategies

Symbolization

Sheet of Assertion
• To assert some statement in EG, you put the

symbolization ϕ of that statement on a sheet
of paper, called the ‘Sheet of Assertion’
(SA). Thus, to assert the truth of some
statement p, draw:

ϕ where ϕ is the
symbolization
of p SA

Symbolization

Location is irrelevant
• The location of the symbolization on the SA

does not matter: as long as it is somewhere
on the SA, it is being asserted. Thus:

ϕ

ϕ

states the
same as:

• In fact, the above two graphs are regarded
as completely identical.

Symbolization

Juxtaposition and Conjunction
• By drawing the symbolization of two statements

on the SA, you are asserting the truth of both
statements at once. Hence, the mere juxtaposition
of two symbolizations on the SA can be
interpreted as the assertion of a single conjunction.
Thus:

ϕ

γ

can be seen as the assertion of
both ϕ and γ, but also as
the assertion of ϕ ∧ γ.

Symbolization

Generalized Conjunction
• Since any number of symbolizations can be

juxtaposed on the SA, juxtaposition becomes a
kind of generalized conjunction that can have any
number of conjuncts. Moreover, since the location
of each of the symbolizations on the SA does not
matter, no particular order on these conjuncts is
imposed. This coincides with our abstract
understanding of conjunction, and it is here that
EG has an important advantage over the linear
notation of traditional PL. An example will help:

Symbolization

Generalized Conjunction: Example
• The top-right graph can be interpreted in any of

the following ways in PL:
– the assertion of 3 statements: P, Q, and R
– the assertion of 2 statements: P and Q ∧ R

• (or of R and P ∧ Q, or of P and R ∧ Q, etc.)

– the assertion of a single statement: P ∧ (Q ∧ R)
• (or of (P ∧ Q) ∧ R, or of (Q ∧ R) ∧ P, or of P ∧ (R ∧ Q), etc.!)

• However, our abstract understanding is in each
case the same: P, Q, and R are all, and at the same
time, true. Hence, a single symbolization should
suffice, and this is exactly what EG can offer us.

P

R

Q

Symbolization

Cut and Negation
• You assert the negation of some statement

by drawing a cut (circle, oval, rectangle, or
any other enclosing figure) around the
symbolization of that statement. Thus:

ϕ asserts that ϕ is false.

(from now on, the SA will no
longer be drawn)

Symbolization

Empty Graph and Tautology
• Any blank piece of paper can be seen as an ‘empty

graph’. Thus, any graph can be seen as the
juxtaposition of that graph with an empty graph.
However, since this juxtaposition should express
the same as the original graph, any empty graph
expresses a tautology. Another way of looking at
this is to view any tautology as an ‘empty claim’
since, being a tautology, it effectively doesn’t
claim anything at all.

Symbolization

Empty Cut and Contradiction
• A cut without any contents is called an

‘empty cut’. Since an empty cut negates an
empty graph, any empty cut expresses a
contradiction (⊥).

Symbolization

Expressive Completeness
• Using juxtaposition for conjunction, and

cuts for negation (and letters for simple,
atomic statements), any compound, truth-
functional statement can be symbolized in
EG. That is, since conjunction and negation
form an expressively complete set of
operators, EG is expressively complete as
well (and EG does not need parentheses!)

Symbolization

From PL to EG

P

~ϕ

ϕ ∧ γ

ϕ ∨ γ

ϕ → γ

P

ϕ

γ

γ ϕ

ϕ

γ ϕ

Symbolization in EG Expression in PL

Symbolization

From EG to PL

P ∧ Q or Q ∧ P or P and Q

~(~P ∧ ~Q) or ~P → Q or P ∨ Q or
~(~Q ∧ ~P) or ~Q → P or Q ∨ P

~(P ∧ ~Q) or ~(~Q ∧ P) or
~P ∨ Q or Q ∨ ~P or P → Q

Q

Q P

P

Q P

Q P ~(P ∧ Q) or ~(Q ∧ P) or
~P ∨ ~Q or ~Q ∨ ~P

Possible Readings

Inference

Inference Rules
• Alpha has four inference rules:

– 2 rules of inference:
• Insertion
• Erasure

– 2 rules of equivalence:
• Double Cut
• Iteration/Deiteration

• To understand these inference rules, one
first has to grasp the concepts of subgraph,
double cut, level, and nested level.

Inference

Subgraph
• The notion of subgraph is best illustrated

with an example:

R

Q
The graph on the left has the following
subgraphs:

Q R R

R

Q

R

Q
, , , ,

In other words, a subgraph is any part of the graph, as long
as cuts keep all of their contents. Any graph is a subgraph of
itself, and empty graphs can be considered subgraphs as well.

Inference

Double Cut
• A Double Cut is any pair of cuts where one

is inside the other and where there is only
the empty graph in between. Thus:

P

R Q

R Q , , and contain double cuts,

but does not.

Inference

Level
• The level of any subgraph is the number of

cuts around it. Thus, in the following graph:

R

Q

Q

R

R

R Q

R

Q

is at level 2

(the graph itself) is at level 0,

, , and are at level 1, and

Inference

Nested Level
• A subgraph ϕ is said to exist at a nested

level in relation to some other subgraph γ if
and only if one can go from γ to ϕ by going
inside zero or more cuts, and without going
outside of any cuts. E.g. in the graph below:

P

R

Q R exists at a nested level in relation to Q,
but not in relation to P. Also:

Q and R exist at a nested level in
relation to each other.

Inference

Double Cut
• The Double Cut rule of equivalence allows

one to draw or erase a double cut around
any subgraph. Obviously, this rule
corresponds exactly with Double Negation
from PL.

ϕ ϕ … … … …

Inference

Insertion
• The Insertion rule allows one to insert any

graph at any odd level.

ϕ … …
1 2k+1

… …
1 2k+1

Inference

Erasure
• The Erasure rule of inference allows one to

erase any graph from any even level.

ϕ … …
1 2k

… …
1 2k

Inference

Iteration/Deiteration
• The Iteration/Deiteration rule of

equivalence allows one to place or erase a
copy of any subgraph at any nested level in
relation to that subgraph.

ϕ … … … … ϕ … … … … ϕ

Inference

Formal Proofs
• A formal proof in EG consists in the successive

application of inference rules to transform one
graph into another.

• Formal proofs in EG are used just as in PL:
– To show that an argument is valid, transform the graph

of the premises into the graph of the conclusion.
– To show that a set of statements is inconsistent

transform the graph of the statements into an empty cut.
– To show that two statements are equivalent, transform

the one into the other, and vice versa.
– To show that a statement is a tautology, transform an

empty graph into the graph of that statement.

Inference

Sample Proof in EG
A

B

DE

DC
E

B H A H

A B H

H A B

DE

H

H A B

H ∨ B

H→A

~A

B

Inference

Transforming rather than Rewriting
• An interesting difference between doing formal proofs in

EG and doing formal proofs in traditional systems is that in
the former one transforms (by adding or deleting) a single
graph, whereas in the latter one deals with multiple
sentences, and has to do a lot of rewriting.

• Example: Suppose we want to infer Q ∧ (R → S) from P
and P → [Q ∧ (R → S)]. In PL, we would use Modus
Ponens to go from two separate statements to a third,
having to rewrite all of Q ∧ (R → S) on a separate line. In
EG, we have a single graph being the juxtaposition of the
symbolizations of P and P → [Q ∧ (R → S)], after which
the second P gets deleted by deiteration and the desired
result is obtained through the simple elimination of a
double cut.

Inference

Proofs as Movies
• Because graphs are being transformed rather than

rewritten, proofs in EG are going to look quite
different from proofs in PL.

• Proofs become like videos that one can play,
rewind, fast-forward, etc.

• It would be interesting to see if this dynamic
character of proofs has any further conceptual
consequences as far as people are able to do
proofs and think about proofs.

Inference

Subproofs
• Another interesting difference between doing formal

proofs in EG and PL is that in EG there is no need for
doing subproofs.

• Of course, one could define subproofs in EG, but one
should notice that at that point one is no longer dealing
with a single graph that is being transformed: extra formal
machinery is needed to deal with subproofs, just as in PL.

• The interesting fact is that the 4 inference rules of EG are
both sound and complete, even though they don’t use
subproofs (see “Alpha: Soundness and Completeness”).

Inference

Simulating Subproofs
• EG does not have subproofs. However, subproofs

can be simulated using the rules of EG in the
following manner:
– 1. Draw an empty double cut on level 0.
– 2. Insert the assumption of the subproof within the

outer cut (i.e. on level 1).
– 3. Iterate the original graph within the inner cut, as well

as the extra assumption.
– 4. Manipulate the graphs on level 2 as usual.
– 5. Use obtained result appropriately (see next slides)

• Subproofs within subproofs can be done at levels
2, 4, etc.

Inference

Conditional Proofs
• Simulating Conditional Proof:

– The assumption is the antecedent (ψ) of the desired conditional
– After iterating the original graph (ϕ) and the assumption on the

even level, one tries to derive the consequent (γ).
– The result is the desired conditional.

ϕ

ψ

ψ ψ ϕ ψ ϕ

ϕ ϕ

ϕ

DC

IN

IT(2x)

γ

Inference

Indirect Proof
• Simulating Indirect Proof:

– The assumption is the negation of the desired goal (ψ)
– After iterating the original graph (ϕ) and the assumption on the

even level, one tries to derive an empty cut.
– Once the empty cut has been obtained, the desired goal can be

obtained through double cut elimination.

ϕ

ψ

ψ ψ ϕ ψ

ψ ϕ

ϕ

ϕ ϕ

ϕ

ϕ ψ

DC

IN

IT(2x) DC

DC

Inference

Deriving Empty Cuts
• Deriving an empty cut often merely requires

the application of Erasure, Deiteration, and
erasing double cuts.

• In other words, one often merely has to
eliminate parts of the graph in order to
derive a contradiction.

Inference

Efficiency of Proofs
• In traditional PL systems, there is a trade-off

between the number of inference rules and the
number of steps of a formal proof: if one wants a
formal proof to require fewer steps, one has to
introduce more inference rules, and if one wants
fewer inference rules, formal proofs will require
more steps.

• While EG has fewer rules (4) than traditional PL
systems (10 to 20), proofs in EG usually require
fewer steps!

Inference

Ease of Proofs
• Although hard empirical data needs to be

gathered, doing proofs in EG seems to be easier
than doing proofs in PL. Possible reasons for this:
– Graphical representation
– Transforming rather than rewriting
– No Subproofs
– Fewer rules, fewer steps.
– Ease of deriving empty cut.

Existential Graphs Home Page

• You can read more about Existential
Graphs, and play with a (somewhat)
working Existential Graphs applet at:
http://www.cogsci.rpi.edu/~heuveb/research
/EG/eg.html

• Programmers needed!
– Possibility of paid summer research position

	Existential Graphs
	Existential Graphs
	Alpha
	Symbolization��Sheet of Assertion
	Symbolization��Location is irrelevant
	Symbolization��Juxtaposition and Conjunction
	Symbolization��Generalized Conjunction
	Symbolization��Generalized Conjunction: Example
	Symbolization��Cut and Negation
	Symbolization��Empty Graph and Tautology
	Symbolization��Empty Cut and Contradiction
	Symbolization��Expressive Completeness
	Symbolization��From PL to EG
	Symbolization��From EG to PL
	Inference��Inference Rules
	Inference��Subgraph
	Inference ��Double Cut
	Inference ��Level
	Inference ��Nested Level
	Inference ��Double Cut
	Inference ��Insertion
	Inference ��Erasure
	Inference ��Iteration/Deiteration
	Inference ��Formal Proofs
	Inference��Sample Proof in EG
	Inference ��Transforming rather than Rewriting
	Inference ��Proofs as Movies
	Inference ��Subproofs
	Inference ��Simulating Subproofs
	Inference ��Conditional Proofs
	Inference ��Indirect Proof
	Inference ��Deriving Empty Cuts
	Inference ��Efficiency of Proofs
	Inference ��Ease of Proofs
	Existential Graphs Home Page

