Formal Proofs

Computability and Logic

General Idea of Proof

• A sequence of statements, starting with premises, followed by intermediate results, and ended by the conclusion, where each of the intermediate results, and the conclusion itself, is an *obvious* consequence from (some of) the premises and previously established intermediate results.

Inference Rules

- Formal proof systems of logic define a finite set of inference rules that reflect 'baby inferences'.
- There are many formal systems of logic, each with their own set of inference rules.
- Moreover, there are several different types of formal proof systems:
 - Axiom Systems
 - Sequent Systems
 - Natural Deduction Systems
 - other

Axiom Systems

- Axiom systems most closely mirror the informal definition of a proof as a sequence of statements.
- In axiom systems, a formal proof is exactly that: a sequence of statements
- Each statement in the proof is either an assumption (premise), an instantiation of a general axiom, or the result of applying an inference rule to any of the previous statements.
- The axioms in axiom systems usually express inference principles in conditional format. As a result, axiom systems often come with only 1 rule of inference: Modus Ponens.

Sequent Systems

- In a sequent system, all inferences are the inference of sequents from other sequents.
- A sequent is a structure $\{\phi_{1,}, \dots, \phi_n\} \models \phi$ making the claim that ϕ is a logical consequence of the set of statements $\{\phi_{1,}, \dots, \phi_n\}$
- A proof in a sequent system is a sequence of sequents.
- Slate implements a sequent system.

Natural Deduction Proof Systems

- Natural Deduction proof systems try to mirror our 'natural' way of reasoning most closely
- Proofs are structured sequences of statements
 - Many inferences are from statements to other statements, resulting in linear sequences of statements
 - However, sometimes additional assumptions are made ('suppose ...'), from which further inferences can be made. Thus one gets linear sequences of statements within linear sequences of statements: subproofs
 - Inference rules infer statements from other statements and from subproofs as a whole

Some Very Basic Inference Rules

		X
$P \wedge Q$	P (or Q)	Q
P (or Q)	$P \lor Q$	$P \wedge Q$
Simplification	Addition	Conjunction

Ρ

What Makes something an Inference Rule?

- A formal system can define any inference from a set of statements to another statement as an inference rule.
 - The rule just needs to be formally defined: "If you have a statement that looks like this, then you can infer a statement that looks like that"
 - They are syntactical
- However, the idea is that:
 - The inference rule reflects a valid inference
 - The inference rule reflects a simple/intuitive inference

Some Other Important (Valid) Inference Patterns

Some Invalid Inference Patterns

 $\frac{P \lor Q}{P \land Q} \qquad \qquad - P$ Modus Bogus Hokus Ponens!

Some Other Important Patterns

Some More

$P \lor Q$	$\neg R \lor \neg S$
$P \rightarrow R$	$P \rightarrow R$
$Q \rightarrow S$	$Q \rightarrow S$
$\mathbf{R} \lor \mathbf{S}$	$\neg P \lor \neg Q$
Constructive	Destructive
Dilemma	Dilemma

Both Valid!

Reiteration

P

P

Justification

- To make a formal proof readable (consumable), you provide a *justification*.
- Thus, for each statement that you infer, you indicate:
 - which other statements you infer that new statement from
 - which inference rule you use
- To help refer to previous statements, we are going to number the statements.

Example Formal Proof

1.	$H \lor B$	А.
2.	Н→А	А.
3.	~A	A.
4.	~H	2, 3 MT
5.	В	1, 4 DS

Natural Deduction: Subproofs

- At any time during a proof, a subproof may be started by making an additional assumption which can then be used to draw further inferences.
- The subproof may be ended at any time. When it is ended, the *individual* statements from the subproof can no longer be used to infer others.
- Subproofs demonstrate that certain statements can be inferred when an additional assumption is made, and this result can be used in the proof itself. That is, the subproof *as a whole* can be used to infer other statements.

Important Uses of Subproofs

- Subproofs are used to formalize the following important proof techniques we commonly use:
 - Proof by Contradition: Assume something P. Show that this assumption leads to a contradiction. Conclude P is not true
 - Proof by Cases: When you know that one of a finite set of cases applies, assume eah of the cases individually. If something Q follows in each case, then infer Q.
 - Conditional Proof: If something Q can be inferred by making assumption P, then we can conclude 'If P then Q'

Proof by Contradiction

Proof by Cases

$$\begin{vmatrix} P_{1} \lor \ldots \lor P_{i} \lor \ldots \lor P_{n} \\ | P_{1} \\ \vdots \\ Q \\ \downarrow \\ | Q \\ \downarrow \\ | P_{n} \\ \vdots \\ Q \\ | Q$$

Conditional Proof

Subproofs and Scope

- An additional line is used to indicate the start and end of the subproof.
- The line can also be seen as the *scope* of the additional assumption made at the start of the subproof: every statement within that scope is inferred from the truth of that assumption and all previous assumptions.
- The line of the proof itself can be seen in exactly this way as well. Therefore, there is no real difference between subproofs and proofs.

Subproofs within Subproofs

- Within any subproof, another subproof can be started.
- Subproofs within subproofs must be ended before the original subproof is ended.
- The general rule is: one can use as justification all and only statements that is either one of the assumptions whose scope one is working in, or some statement inferred from those.

F: A 'Fitch'-style Natural Deduction Proof System

- The formal system that our book uses is called *F*.
- *F* has 2 inference rules for each connective:
 - *Introduction*: A rule to infer a statement with that connective as its main connective
 - *Elimination*: A rule to infer something from a statement with that connective as its main connective.
- Formal systems with these two types of inference rules are called 'Fitch'-style systems.

How to Do Modus Tollens in F

Pattern:	Proc	Proof:		
$\phi \rightarrow \psi$	1.	$\phi \to \psi$		
Ψ	2.	ψ		
¬φ	3.	φ		
	4.	Ψ	$1,3 \rightarrow \text{Elim}$	
	5.		$2,4 \perp Intro$	
	6.	-φ	3-5 – Intro	

∧ Elim

$\begin{vmatrix} P_1 \wedge P_2 \wedge \ldots \wedge P_n \\ \vdots \end{vmatrix}$

- P_i

\wedge Intro

 P_1 \downarrow P_n $P_1 \land P_2 \land \ldots \land P_n$

∨ Intro

∨ Elim

$$\begin{array}{c|c}
P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n \\
P_1 \\
\vdots \\
Q \\
\downarrow \\
P_n \\
\vdots \\
Q \\
Q \\
Q
\end{array}$$

¬ Elim

¬ Intro

\perp Elim

\perp Intro

\rightarrow Elim

 $P \rightarrow Q$ $\downarrow \qquad P$ \vdots Q

\rightarrow Intro

\leftrightarrow Elim

 $P \leftrightarrow Q \text{ (or } Q \leftrightarrow P)$ $\downarrow \qquad P$ \vdots Q

\leftrightarrow Intro

