
Predicate Logic 



From Propositional Logic to 
Predicate Logic 

• Last week, we dealt with propositional (or 
truth-functional, or sentential) logic: the 
logic of truth-functional statements. 

• Today, we are going to deal with predicate 
(or quantificational, or first-order) logic. 

• Quantificational logic is an extension of, 
and thus builds on, truth-functional logic. 



The Language of Predicate Logic 



Individual Constants 

• An individual constant is a name for an 
object. 

• Examples: john, marie, a, b 
• Each name is assumed to refer to a unique 

individual, i.e. we will not have two objects 
with the same name. 

• However, each individual object may have 
more than one name. 
 



Predicates 

• Predicates are used to express properties of 
objects or relations between objects. 

• Examples: Tall, Cube, LeftOf, = 
• Arity: the number of arguments of a 

predicate (E.g. Tall: 1, LeftOf: 2) 



Interpreted and Uninterpreted 
Predicates 

• Just as ‘P’ can be used to denote any 
statement in propositional logic, a predicate 
like ‘LeftOf’ is left ‘uninterpreted’ in 
predicate logic. Thus, a statement like 
LeftOf(a,a) can be true in predicate logic. 

• The predicate ‘=‘ is an exception: it will 
automatically be interpreted as the identity 
predicate. 



Quantification: ‘All’ and ‘Some’ 

• In quantificational logic, there are two 
quantifiers: ‘all’ and ‘some’. 

• Here are some examples:  
– ∀x Mortal(x)    ‘All things are mortal’ 
– ∃x Mortal(x)    ‘Some things are mortal’ 
– ∀x (Human(x) → Mortal(x))   ‘Every human is 

mortal’ 
– ∃x (Human(x) ∧ ¬Mortal(x))   ‘Some human is 

not mortal’ 



Universe of Discourse  
(or Domain) 

• When we say ‘all’ or ‘some’, we mean ‘all’ 
or ‘some’ of a group of objects we have in 
mind. 

• This group of objects is the Universe of 
Discourse or Domain 



Symbolization 



The Four Aristotelian Forms 

• “All P’s are Q’s” 
– ∀x (P(x) → Q(x)) 

• “Some P’s are Q’s” 
– ∃x (P(x) ∧ Q(x)) 

• “No P’s are Q’s” 
– ∀x (P(x) → ¬Q(x)) 

• “Some P’s are not Q’s” 
– ∃x (P(x) ∧ ¬Q(x)) 



Translating Complex Phrases 
• When translating (symbolizing) statements in FOL, clearly 

separate between the subject term (that about which you 
say something), and the predicate term (that what you say 
about those things) 

• “Some blue cubes are big” 
– I am saying something about some blue cubes ... 

• ∃x ((Cube(x) ∧ Blue(x)) ∧ … 
– and that is that they are big. 

• ∃x ((Cube(x) ∧ Blue(x)) ∧ Big(x)) 

• “No cubes are both blue and big” 
– I am saying something about all cubes … 

• ∀x ((Cube(x) → … 
– and that is that they are not both blue and big. 

• ∀x ((Cube(x) → ¬(Blue(x) ∧ Big(x))) 



Swapping Mixed Quantifiers: 
Order Matters 

∃y ∀x Likes(x,y)  
“Something is liked by  
everything (including itself)” 

∀x ∃y Likes(x,y) 
“Everything likes  
something (possibly itself)” 



Expressing Number of Objects 

• How do we express that there are (at least) two 
cubes? 

• Note that ∃x ∃y (Cube(x) ∧ Cube(y)) doesn’t 
work: this will be true in a world with 1 object 
(just pick that object for both x and y!) 

• So, we have to make sure that x and y are different 
objects: ∃x ∃y (x≠y ∧ Cube(x) ∧ Cube(y))  



‘Exactly One’ 

• How can we say that “There is exactly one cube”? 
• Saying that there is exactly one cube is saying two 

things at once:  
– There is at least one cube: ∃xCube(x) 
– There is at most one cube: ¬∃x∃y(Cube(x)∧Cube(y) 
∧x≠y) 

– Thus: ∃xCube(x) ∧ ¬∃x∃y(Cube(x)∧Cube(y)∧x≠y) 
• Alternatively (and simpler):  

– ∃x(Cube(x) ∧ ¬∃y(Cube(y) ∧ x≠y)) 
– ∃x(Cube(x) ∧ ∀y(Cube(y) → x=y)) 
– ∃x ∀y(Cube(y) ↔ x=y)) 



‘Exactly Two’ 

• How do we say “There are exactly two 
cubes”? 

• Similar set-up:  
– ∃x ∃y(Cube(x) ∧ Cube(y) ∧ x≠y ∧ ¬∃z(Cube(z) ∧ z≠x 
∧ z≠y)) or: 

– ∃x ∃y(Cube(x) ∧ Cube(y) ∧ x≠y ∧ ∀z(Cube(z) → (z=x 
∨ z=y))) or: 

– ∃x ∃y(x≠y ∧ ∀z(Cube(z) ↔ (z=x ∨ z=y))) 

 



‘Exactly n’ 

• Following previous set-up: 
– ∃x1 ∃x2 … ∃xn(x1≠x2 ∧ … ∧ x1 ≠xn ∧ x2 ≠x3 … x2 ≠xn 
∧ … ∧ xn-1 ≠xn ∧ ∀z(Cube(z) ↔ (z=x1 ∨ z=x2 ∨ … ∨ 
z=xn))) 

• Alternatively, conjunct ‘at least n cubes’ with ‘at 
most n cubes’. 
– ‘At most n cubes’: ∃x1 ∃x2 … ∃xn ∀z(Cube(z) → (z=x1 
∨ z=x2 ∨ … ∨ z=xn))) 

– ‘At least n cubes’ (= ‘not at most n-1 cubes’): ¬∃x1 ∃x2 
… ∃xn-1 ∀z(Cube(z) → (z=x1 ∨ z=x2 ∨ … ∨ z=xn-1))) 
(note: you make the Assumption of Existental Import 
here, i.e. that there is exists at least one object) 



The Logic of Quantifiers 



Quantifiers and Truth-Functional 
Logic 

• Quantificational logic is an extension of truth-
functional logic, so truth-functional relationships 
still exist in quantificational logic. 

• To see if any truth-functional relationships hold 
when dealing with quantificational sentences, it is 
helpful to consider the truth-functional form of 
those sentences. To find the truth-functional form, 
simply substitute P, Q, etc for sentences. 

• Example: ∀x Cube(x) ∨ ¬∀x Cube(x) has the 
truth-functional form P ∨ ¬P, and therefore is a 
truth-functionally necessary true statement. 



FO Necessities 

• While ∀x (Cube(x) ∨ ¬Cube(x)) is a logically 
necessary true statement, this is not so in virtue of 
truth-functional logic, since it has the truth-
functional form P. 

• The above statement is a necessarily true 
statement in virtue of truth-functional properties as 
well as quantificational properties (and identity). 

• Thus, the above statement is said to be a 
quantificationally necessary true statement, or a 
first-order (FO) necessary true statement. 

• For some strange reason, FO necessary true 
statements are also called FO valid statements. 



FO Consequence, Equivalence, 
Consistency, etc. 

• The notions of FO consequence, equivalence, 
consistency, etc. can be similarly defined: 
– A statement ψ is a FO consequence of a set of 

statements Γ iff ψ is a logical consequence of Γ in 
virtue of truth-functional properties, quantificational 
properties, and identity. 

– Two statements ϕ and ψ are FO equivalent iff ϕ and ψ 
are logically equivalent in virtue of truth-functional 
properties, quantificational properties, and identity.  

– A set of statements Γ is FO consistent iff Γ is logically 
consistent in virtue of truth-functional properties, 
quantificational properties, and identity. 

– Etc. 



Truth-Functional, First-Order, 
and Logical Consequence 

• FO consequence sits between truth-functional 
consequence and logical consequence: 
– Remember we wrote Γ ⇒TF ψ to indicate that ψ is a 

truth-functional consequence of Γ.  
– Let us now write Γ ⇒FO ψ to indicate that ψ is a FO 

consequence of Γ. Then: 
– For any Γ and ψ, if Γ ⇒TF ψ , then Γ ⇒FO ψ, but not 

vice versa. E.g: {¬∀x Cube(x)} ⇒FO ∃x¬Cube(x), but 
not {¬∀x Cube(x)} ⇒TF ∃x ¬Cube(x). 

– For any Γ and ψ, if Γ ⇒FO ψ , then Γ ⇒ ψ, but not vice 
versa. Example: {LeftOf(a,b)} ⇒ RightOf(b,a), but not 
{LeftOf(a,b)} ⇒FO RightOf(b,a). 



The Boolean Square of 
Opposition 

∀x P(x) 

∃x ¬P(x) ∃x P(x) 

∀x ¬P(x) 

: Contradictories 

‘Everything is a P’ ‘Nothing is a P’ 

‘Something is not a P’ ‘Something is a P’ 



The Assumption of Existential 
Import 

• The Assumption of Existential Import is the 
assumption that the world in which we evaluate is 
not empty, i.e. that at least one thing exists. 

• Under this assumption, ∃x P(x) is true if ∀x P(x) 
is true. Without the assumption, however, it’s not: 
if the world in which we evaluate is empty, then 
∃x P(x) is false, even though ∀x P(x) is 
(vacuously) true. 

• In first-order logic, we make the assumption of 
existential import. Thus, ∃x P(x) is considered a 
FO consequence of ∀x P(x), even though logically 
it is not. 



The Boolean Square Under the 
Assumption of Existential Import 

∀x P(x) 

∃x ¬P(x) ∃x P(x) 

∀x ¬P(x) 

Contraries: Can’t both be true 

Contraries 

Subcontraries 

Subcontraries: Can’t both be false 



The Aristotelean Square of 
Opposition 

∀x (P(x) → Q(x)) 

∃x (P(x) ∧ ¬Q(x)) ∃x (P(x) ∧ Q(x)) 

∀x (P(x) → ¬Q(x)) 

: Contradictories 

‘All P are Q’ 

‘Some P are Q’ ‘Some P are not Q’ 

‘No P are Q’ 



The Assumption of Categorical 
Existential Import 

• The Assumption of Categorical Existential Import 
is the assumption that for every property there is at 
least one thing that has that property. 

• Under this assumption, ∃x (P(x) ∧ Q(x)) is true if 
∀x (P(x) → Q(x)) is true. Without the assumption, 
however, it’s not: if nothing has property P, then 
∃x (P(x) ∧ Q(x)) is false, even though ∀x (P(x) → 
Q(x)) is (vacuously) true. 

• In first-order logic, we do not make the 
assumption of categorical existential import. Thus, 
∃x (P(x) ∧ Q(x)) is not considered a FO 
consequence of ∀x (P(x) → Q(x)). 



The Aristotelean Square Under 
the Categorical Assumption 

∀x (P(x) → Q(x)) 

∃x (P(x) ∧ ¬Q(x)) ∃x (P(x) ∧ Q(x)) 

∀x (P(x) → ¬Q(x)) 



Other Quantifier Equivalences 
• ∀ over ∧, and ∃ over ∨: 

– ∀x (ϕ(x) ∧ ψ(x)) ⇔ ∀x ϕ(x) ∧ ∀x ψ(x) 
– ∃x (ϕ(x) ∨ ψ(x)) ⇔ ∃x ϕ(x) ∨ ∃x ψ(x) 

• Null Quantification: 
– ∀x P ⇔ P 
– ∃x P ⇔ P 

• Replacing bound variables: 
– ∀x ϕ(x) ⇔ ∀y ϕ(y)  
– ∃x ϕ(x) ⇔ ∃y ϕ(y)  

• Swapping quantifiers of same type: 
– ∀x ∀y ϕ(x,y) ⇔ ∀y ∀x ϕ(x,y)  
– ∃x ∃y ϕ(x,y) ⇔ ∃y ∃x ϕ(x,y) 



Rewriting Example 
If ¬∀x (P(x) → Q(x)) (‘not all P’s are Q’s), then 
∃x (P(x) ∧ ¬Q(x)) (some P’s are not Q’s), and  
vice versa: 

¬∀x (P(x) → Q(x)) ⇔ (QN) 
∃x ¬(P(x) → Q(x)) ⇔ (Impl) 
∃x (P(x) ∧ ¬Q(x)) 
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