
Formal Proofs for Quantifiers 
in F 

Computability and Logic 



Quantifier Rules in F 

• There are 4 quantifier rules in F: 
– Universal Introduction and Elimination 
– Existential Introduction and Elimination 

• As we saw last time, Universal Introduction and 
Existential Elimination have restrictions in that the 
rules cannot be applied relative to just any 
individual constant. The system F deals with those 
restrictions through the use of subproofs. We’ll 
see later how that works.  

• Fortunately, Universal Elimination and Existential 
Introduction do not have any restrictions, so we’ll 
start with those. 



Notation 

• In describing the rules, the following 
notation is useful: 
– ϕ(x) is a wff with zero or more instances of x as 

the only free variable. 
– ϕ(a/x) is the statement that results when 

substituting ‘a’ for all occurrences of ‘x’ that 
are free in ϕ(x).  

– If it is clear which variable we are substituting, 
we will simply write ϕ(a). 



∀ Elim 

• Universal Elimination (∀ Elim) allows one 
to conclude that any thing has a certain 
property if everything has that property: 

∀x ϕ(x) 

ϕ(a) 

 



Good and Bad Uses of ∀ Elim 

∀x SameSize(x,x) 

SameSize(a,a) 

 

∀x SameSize(x,x) 

SameSize(x,a) 

 

∀x SameSize(x,x) 

SameSize(a,b) 

 

∀x (Tet(x) → ∀x Large(x)) 

Tet(a) → ∀x Large(a) 
 

Good Bad 

→ The same individual  
constant should be used! 

Bad Bad 

→ All free occurrences of x 
should be replaced! 

→ Only free occurrences of x 
should be replaced! 



∃ Intro 

• Existential Introduction (∃ Intro) allows one 
to conclude that something has a certain 
property if some thing has that property: 

∃x ϕ(x) 

ϕ(a) 

 



Good and Bad Uses of ∃ Intro 

∃x SameSize(x,x) 

SameSize(a,a) 

 Good Good 

Bad Bad 

→ The same individual  
constant should be used! 

→ Doesn’t follow the rule (no  
free x’s in ∃x SameSize(x,x)) 

∃x SameSize(a,x) 

SameSize(a,a) 

 

∃x SameSize(x,x) 

SameSize(a,b) 

 
∃x ∃x SameSize(x,x) 

∃x SameSize(a,x) 
 

→ Not all occurrences of a 
have to be replaced! 



∀ Intro 

• Universal Introduction (∀ Elim) allows one 
to conclude that everything has a certain 
property if anything has that property: 

∀x ϕ(x) 

ϕ(a) 

 

a 
a may not occur before the subproof,  
unless all subproofs in which it occurs  
have been closed. a may not occur in 
ϕ(x) either. 



Good and Bad Uses of ∀ Intro 

∀x SameSize(x,x) 

SameSize(a,a) 

 
Good Bad 

Still 
Good 

Bad 

→ a occurs outside subproof,  
but only in a subproof that has 
been closed. 

→ a occurs in SameSize(a,x)! 

→ a occurs before subproof! 

a 

∀x SameSize(x,x) 

SameSize(a,a) 

 
a 

∀x SameSize(a,x) 

SameSize(a,a) 

 
a 

∀x Tet(x) 

Tet(a) 

 
a 

Tet(a) 



∃ Elim 

• Existential Elimination (∃ Elim) allows one 
to conclude anything that follows from 
some thing having a certain property, given 
that something has that property. 

∃x ϕ(x) 

a ϕ(a) 

 
Q 

Q 

a may not occur before the subproof,  
unless all subproofs in which it occurs  
have been closed. a may not occur in 
Q either. 



Good and Bad Uses of ∃ Elim 

∃x SameSize(x,x) 

Tet(b) 

 Good 
Bad 

Still 
Good 

→ a occurs before subproof,  
but only in a subproof 
which has been closed. 

→ a occurs before subproof! 

a SameSize(a,a) 
 ∃x SameSize(x,x) 

∀x Large(x) 

 
a SameSize(a,a) 

∃x Cube(x) 

 
a Cube(a) 

Tet(a) 

Tet(b) 

∃x Cube(x) 

 

∀x Large(x) 

Large(a) 

 
a SameSize(a,a) 

Large(a) 

Bad 

→ a occurs in Large(a)! 



General Conditional Proof 

• Most universal claims are proven by the 
application of ∀ Intro. Also, most universal claims 
are of the form ∀x (ϕ(x) → ψ(x)). Thus, most 
proofs of universal claims would look like this: 

∀x (ϕ(x) → ψ(x))  

ϕ(a) 

 

a 

ψ(a) 
ϕ(a) → ψ(a) 



General Conditional Proof 
(Continued) 

• Because this is such a common pattern, the 
rule of General Conditional Proof allows us 
to take a little short cut: 

∀x (ψ(x) → ϕ(x)) 

ψ(a) 

 

a ϕ(a) a may not occur before the subproof,  
unless all subproofs in which it occurs  
have been closed. a may not occur in 
ϕ(x) → ψ(x) either. 
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