Formal Proofs for Quantifiers in F

Computability and Logic

Quantifier Rules in F

- There are 4 quantifier rules in F:
 - Universal Introduction and Elimination
 - Existential Introduction and Elimination
- As we saw last time, Universal Introduction and Existential Elimination have restrictions in that the rules cannot be applied relative to just any individual constant. The system *F* deals with those restrictions through the use of subproofs. We'll see later how that works.
- Fortunately, Universal Elimination and Existential Introduction do not have any restrictions, so we'll start with those.

Notation

- In describing the rules, the following notation is useful:
 - $\varphi(x)$ is a wff with zero or more instances of x as the only free variable.
 - $\phi(a/x)$ is the statement that results when substituting 'a' for all occurrences of 'x' that are free in $\phi(x)$.
 - If it is clear which variable we are substituting, we will simply write $\varphi(a)$.

∀ Elim

 Universal Elimination (∀ Elim) allows one to conclude that any thing has a certain property if everything has that property:

```
∀x φ(x)
:
φ(a)
```

Good and Bad Uses of ∀ Elim

 $\forall x \text{ SameSize}(x,x)$ $\forall x \text{ SameSize}(x,x)$:
SameSize(a,b) Good Bad \rightarrow The *same* individual constant should be used! ∀x SameSize(x,x) : : SameSize(x,a) $\forall x (Tet(x) \rightarrow \forall x Large(x))$ \vdots $Tet(a) \rightarrow \forall x Large(a)$ Bad Bad

 \rightarrow All free occurrences of x

should be replaced!

 \rightarrow Only *free* occurrences of x

should be replaced!

∃ Intro

• Existential Introduction (∃ Intro) allows one to conclude that something has a certain property if some thing has that property:

Good and Bad Uses of ∃ Intro

SameSize(a,a) SameSize(a,a) ∃x SameSize(x,x) Good Good $\exists x \text{ SameSize}(a,x)$ \rightarrow Not all occurrences of a have to be replaced! SameSize(a,b) $\exists x \text{ SameSize}(a,x)$ Bad Bad $\exists x \text{ SameSize}(x,x)$

 \rightarrow The *same* individual

constant should be used!

 $\exists x \ \exists x \ SameSize(x,x)$

 \rightarrow Doesn't follow the rule (no

free x's in $\exists x \text{ SameSize}(x,x)$)

∀ Intro

 Universal Introduction (∀ Elim) allows one to conclude that everything has a certain property if anything has that property:

 $\begin{array}{|c|c|c|} & \Rightarrow a \\ & \vdots \\ & \Rightarrow a \text{ may not occur before the subproof,} \\ & \text{unless all subproofs in which it occurs} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \text{unless all subproofs in which it occurs} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \text{unless all subproofs in which it occurs} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in before the subproof,} \\ & \Rightarrow a \text{ may not occur in befo$

Good and Bad Uses of ∀ Intro

Good :
SameSize(a,a)
∀x SameSize(x,x) Bad :
SameSize(a,a)
∀x SameSize(x,x) \rightarrow a occurs before subproof! Still | : Tet(a) \rightarrow a occurs outside subproof, \rightarrow a occurs in SameSize(a,x)! but only in a subproof that has been closed.

∃ Elim

• Existential Elimination (∃ Elim) allows one to conclude anything that follows from some thing having a certain property, given that something has that property.

$\exists x \ \phi(x)$	
⊳a φ(a)	a may not occur before the subproof,
•	unless all subproofs in which it occurs
Q	have been closed. a may not occur in
O	Q either.

Good and Bad Uses of ∃ Elim

```
\exists x \text{ SameSize}(x,x)
                                                                 Tet(a)
              ⊳a SameSize(a,a)
                                                                 \exists x \text{ SameSize}(x,x)
Good
                                                    Bad
                                                                   ⊳a SameSize(a,a)
              \exists x \, Cube(x)
            \exists x \text{ Cube}(x)
                                                                   \forall x \text{ Large}(x)
              ⊳a Cube(a)
                                                                  \forall x \text{ Large}(x)
 Still
                                                                 \rightarrow a occurs before subproof!
              Tet(b)
 Good
                                                                   ⊳a SameSize(a,a)
            Tet(b)
                                                     Bad
          \rightarrow a occurs before subproof,
          but only in a subproof
          which has been closed.
                                                               \rightarrow a occurs in Large(a)!
```

General Conditional Proof

• Most universal claims are proven by the application of \forall Intro. Also, most universal claims are of the form $\forall x \ (\phi(x) \rightarrow \psi(x))$. Thus, most proofs of universal claims would look like this:

General Conditional Proof (Continued)

 Because this is such a common pattern, the rule of General Conditional Proof allows us to take a little short cut:

 $| \hspace{-1em} \hspace$