
Truth Trees for
Predicate Logic

Computability and Logic

Running Examples

Valid Argument (13.24):
∃x (Cube(x) ∧ Small(x))
∴∃x Cube(x) ∧ ∃x Small(x)

Invalid Argument (13.25):
∃x Cube(x) ∧ ∃x Small(x)
∴∃x (Cube(x) ∧ Small(x))

Truth-Functional Expansions

• Suppose that our Universe of Discourse (UD)
contains only the objects a and b.

• Given this UD, the claim ∀x Cube(x) is true iff
Cube(a) ∧ Cube(b) is true.

• Similarly, the claim ∃x Cube(x) is true iff Cube(a)
∨ Cube(b) is true.

• The truth-functional interpretation of the FO
statements given a fixed UD is called the truth-
functional expansion of the original FO statement
with regard to that UD.

Truth-Functional Expansions and
Proving FO Invalidity

• Truth-Functional expansions can be used to
prove FO invalidity. Example (13.25):

∃x Cube(x) ∧ ∃x Small(x)
∴∃x (Cube(x) ∧ Small(x))

UD = {a,b}

(Cube(a) ∨ Cube(b)) ∧ (Small(a) ∨ Small(b))
∴(Cube(a) ∧ Small(a)) ∨ (Cube(b) ∧ Small(b))

T T T T

T

T

T F

F

F F F F

F

This shows that there is a world in which the premise is
true and the conclusion false. Hence, the original argument
is FO invalid.

Truth-Functional Expansions and
Proving FO Validity

• If the truth-functional expansion of an FO argument in
some UD is truth-functionally invalid, then the original
argument is FO invalid, but if it is truth-functionally valid,
then that does not mean that the original argument is FO
valid.

• For example, with UD = {a}, the expansion of the
argument would be truth-functionally valid. In general, it is
always possible that adding one more object to the UD
makes the expansion invalid.

• Thus, we can’t prove validity using the expansion method,
as we would have to show the expansion to be valid in
every possible UD, and there are infinitely many UD’s.

• The expansion method is therefore only good for proving
invalidity. Indeed, it searches for countermodels.

The Expansion Method as a
Systematic Procedure

• Still, the expansion method can be made
into a systematic procedure to test for FO
invalidity:
– Step 1: Expand FO argument (which can be

done systematically) in UD = {a}.
– Step 2: Use some systematic procedure (e.g.

truth-table method or truth-tree method) to test
whether the expansion is TF invalid. If it is TF
invalid, then stop: the FO argument is FO
invalid. Otherwise, expand FO argument in UD
= {a,b}, and repeat step 2.

Incompleteness of
the Expansion Method

• We saw that the expansion method is not a complete test
for FO validity.

• However, it is also an incomplete test for FO invalidity!
• Proof: Consider the following argument:

∀x∀y(x≠y → ((x>y ∨ y>x) ∧
 ¬(x>y ∧ y>x)))
∀x∀y∀z((x>y ∧ y>z) → x>z)
∴∃x∀y(x≠y → x>y)

For any UD with an arbitrarily
large yet finite number of objects,
the expansion of this argument
will be truth-functionally valid.
However, the argument is FO
invalid (consider the natural
numbers)!

A More Focused Search

• A further drawback of the expansion method is
that the search for a counterexample is very
inefficient.

• A focused search for a counterexample is more
efficient:
– (13.25) I want there to be at least one cube, and at least

one small object, but no small cubes. So, if we have a
cube, a, then a cannot be small, so I need a second
object, b, which is small, but not a cube.
Counterexample, so the argument is invalid.

Advantage of a Focused Search

• The focused search method is like the indirect
truth-table method.

• Indeed, like the indirect truth-table method, the
focused search method can prove validity:
– (13.24) I want there to be at least one small cube. Let us

call this small cube a. How, I don’t want it to be true
that there is at least one cube and at least one small
object. However, a is both a cube and small.
Contradiction, so I can’t generate a counterexample.

Truth-Trees for Predicate Logic

• Like the direct method, the focused search
method needs to be systematized, especially
since the search often involves making
choices.

• Fortunately, the truth-tree method, which
systematized the indirect truth-table method
in truth-functional logic, can be extended
for predicate logic.

Truth-Tree Rules for Quantifiers

¬∀x ϕ(x)

ϕ(c)

∃x ¬ϕ(x)

¬∃x ϕ(x)

∀x ¬ϕ(x)

∃x ϕ(x)
ϕ(c)
∀x ϕ(x)

√

√

√

with ‘c’ a
new constant
in that branch

with ‘c’ any
constant

Truth-Tree Example I
∃x Cube(x) ∧ ∃x Small(x)
¬∃x (Cube(x) ∧ Small(x))

∃x Cube(x)
∃x Small(x)

√

∀x ¬(Cube(x) ∧ Small(x))

√

Cube(a)

√

Small(b)

√

¬(Cube(a) ∧ Small(a))
¬(Cube(b) ∧ Small(b))

¬Cube(a) ¬Small(a)

¬Cube(b) ¬Small(b)

√
√

×

×
Open branch,
so it’s invalid

Truth-Tree Example II
∃x (Cube(x) ∧ Small(x))
¬(∃x Cube(x) ∧ ∃x Small(x))

Cube(a) ∧ Small(a)
Cube(a)
Small(a)

√

√
√

¬∃x Cube(x) ¬∃x Small(x) √ √
∀x ¬Cube(x) ∀x ¬Small(x)
¬Cube(a) ¬Small(a)

× ×
All branches close,
so it’s valid

Finished Trees

• A branch is closed if it contains a statement and its
negation.

• An open branch is finished if every statements in
that branch that has not been decomposed is either
a literal or a universal that has been instantiated
for every constant in that branch.

• A tree is finished if all its branches are closed (in
which case the statements at the root cannot be
satisfied), or if it contains a finished open branch
(in which case the statements can be satisfied).

Infinite Trees
∀x ∃y Likes(x,y)
∃y Likes(a,y)

Likes(a,b)
∃y Likes(b,y)

Likes(b,c)
∃y Likes(c,y)

Likes(c,d)
∃y Likes(d,y)

Likes(d,e)



This tree will
never be finished,
so the tree method
will not give us
any answer!

√

√

√

√

	Truth Trees for �Predicate Logic
	Running Examples
	Truth-Functional Expansions
	Truth-Functional Expansions and Proving FO Invalidity
	Truth-Functional Expansions and Proving FO Validity
	The Expansion Method as a Systematic Procedure
	Incompleteness of �the Expansion Method
	A More Focused Search
	Advantage of a Focused Search
	Truth-Trees for Predicate Logic
	Truth-Tree Rules for Quantifiers
	Truth-Tree Example I
	Truth-Tree Example II
	Finished Trees
	Infinite Trees

