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Computability and Logic 



Running Examples 

Valid Argument (13.24): 
∃x (Cube(x) ∧ Small(x)) 
∴∃x Cube(x) ∧ ∃x Small(x) 

Invalid Argument (13.25): 
∃x Cube(x) ∧ ∃x Small(x) 
∴∃x (Cube(x) ∧ Small(x)) 



Truth-Functional Expansions 

• Suppose that our Universe of Discourse (UD) 
contains only the objects a and b. 

• Given this UD, the claim ∀x Cube(x) is true iff 
Cube(a) ∧ Cube(b) is true. 

• Similarly, the claim ∃x Cube(x) is true iff Cube(a) 
∨ Cube(b) is true. 

• The truth-functional interpretation of the FO 
statements given a fixed UD is called the truth-
functional expansion of the original FO statement 
with regard to that UD. 



Truth-Functional Expansions and 
Proving FO Invalidity  

• Truth-Functional expansions can be used to 
prove FO invalidity. Example (13.25): 

∃x Cube(x) ∧ ∃x Small(x) 
∴∃x (Cube(x) ∧ Small(x)) 

UD = {a,b} 

(Cube(a) ∨ Cube(b)) ∧ (Small(a) ∨ Small(b))  
∴(Cube(a) ∧ Small(a)) ∨ (Cube(b) ∧ Small(b))  
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This shows that there is a world in which the premise is  
true and the conclusion false. Hence, the original argument  
is FO invalid. 



Truth-Functional Expansions and 
Proving FO Validity 

• If the truth-functional expansion of an FO argument in 
some UD is truth-functionally invalid, then the original 
argument is FO invalid, but if it is truth-functionally valid, 
then that does not mean that the original argument is FO 
valid. 

• For example, with UD = {a}, the expansion of the 
argument would be truth-functionally valid. In general, it is 
always possible that adding one more object to the UD 
makes the expansion invalid. 

• Thus, we can’t prove validity using the expansion method, 
as we would have to show the expansion to be valid in 
every possible UD, and there are infinitely many UD’s. 

• The expansion method is therefore only good for proving 
invalidity. Indeed, it searches for countermodels. 



The Expansion Method as a 
Systematic Procedure 

• Still, the expansion method can be made 
into a systematic procedure to test for FO 
invalidity: 
– Step 1: Expand FO argument (which can be 

done systematically) in UD = {a}.  
– Step 2: Use some systematic procedure (e.g. 

truth-table method or truth-tree method) to test 
whether the expansion is TF invalid. If it is TF 
invalid, then stop: the FO argument is FO 
invalid. Otherwise, expand FO argument in UD 
= {a,b}, and repeat step 2. 



Incompleteness of  
the Expansion Method 

• We saw that the expansion method is not a complete test 
for FO validity. 

• However, it is also an incomplete test for FO invalidity! 
• Proof: Consider the following argument: 

∀x∀y(x≠y → ((x>y ∨ y>x) ∧  
 ¬(x>y ∧ y>x))) 
∀x∀y∀z((x>y ∧ y>z) → x>z) 
∴∃x∀y(x≠y → x>y) 

For any UD with an arbitrarily  
large yet finite number of objects,  
the expansion of this argument  
will be truth-functionally valid.  
However, the argument is FO  
invalid (consider the natural  
numbers)! 



A More Focused Search 

• A further drawback of the expansion method is 
that the search for a counterexample is very 
inefficient. 

• A focused search for a counterexample is more 
efficient: 
– (13.25) I want there to be at least one cube, and at least 

one small object, but no small cubes. So, if we have a 
cube, a, then a cannot be small, so I need a second 
object, b, which is small, but not a cube. 
Counterexample, so the argument is invalid. 



Advantage of a Focused Search 

• The focused search method is like the indirect 
truth-table method. 

• Indeed, like the indirect truth-table method, the 
focused search method can prove validity: 
– (13.24) I want there to be at least one small cube. Let us 

call this small cube a. How, I don’t want it to be true 
that there is at least one cube and at least one small 
object. However, a is both a cube and small. 
Contradiction, so I can’t generate a counterexample. 



Truth-Trees for Predicate Logic 

• Like the direct method, the focused search 
method needs to be systematized, especially 
since the search often involves making 
choices. 

• Fortunately, the truth-tree method, which 
systematized the indirect truth-table method 
in truth-functional logic, can be extended 
for predicate logic. 



Truth-Tree Rules for Quantifiers 

¬∀x ϕ(x) 

ϕ(c) 

∃x ¬ϕ(x) 

¬∃x ϕ(x) 

∀x ¬ϕ(x) 

∃x ϕ(x) 
ϕ(c) 
∀x ϕ(x) 

√ 

√ 

√ 

with ‘c’ a 
new constant 
in that branch 

with ‘c’ any 
constant 



Truth-Tree Example I 
∃x Cube(x) ∧ ∃x Small(x) 
¬∃x (Cube(x) ∧ Small(x)) 

∃x Cube(x) 
∃x Small(x) 

√ 

∀x ¬(Cube(x) ∧ Small(x)) 

√ 

Cube(a) 

√ 

Small(b) 

√ 

¬(Cube(a) ∧ Small(a)) 
¬(Cube(b) ∧ Small(b)) 

¬Cube(a) ¬Small(a) 

¬Cube(b) ¬Small(b) 

√ 
√ 

× 

× 
Open branch, 
so it’s invalid 



Truth-Tree Example II 
∃x (Cube(x) ∧ Small(x)) 
¬(∃x Cube(x) ∧ ∃x Small(x)) 

Cube(a) ∧ Small(a) 
Cube(a) 
Small(a) 

√ 

√ 
√ 

¬∃x Cube(x) ¬∃x Small(x) √ √ 
∀x ¬Cube(x) ∀x ¬Small(x) 
¬Cube(a) ¬Small(a) 

× × 
All branches close, 
so it’s valid 



Finished Trees 

• A branch is closed if it contains a statement and its 
negation. 

• An open branch is finished if every statements in 
that branch that has not been decomposed is either 
a literal or a universal that has been instantiated 
for every constant in that branch. 

• A tree is finished if all its branches are closed (in 
which case the statements at the root cannot be 
satisfied), or if it contains a finished open branch 
(in which case the statements can be satisfied). 



Infinite Trees 
∀x ∃y Likes(x,y) 
∃y Likes(a,y) 

Likes(a,b) 
∃y Likes(b,y) 

Likes(b,c) 
∃y Likes(c,y) 

Likes(c,d) 
∃y Likes(d,y) 

Likes(d,e) 

 

This tree will 
never be finished, 
so the tree method 
will not give us 
any answer! 
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