Truth Trees for
Predicate Logic

Computability and Logic

Running Examples

Valid Argument (13.24):
X (Cube(x) A Small(x))
. 3X Cube(x) A Ix Small(x)

Invalid Argument (13.25):
dx Cube(x) A Ix Small(x)
. 3X (Cube(x) A Small(x))

Truth-Functional Expansions

Suppose that our Universe of Discourse (UD)
contains only the objects a and b.

Given this UD, the claim Vx Cube(x) Is true Iff
Cube(a) A Cube(b) Is true.

Similarly, the claim 3x Cube(x) is true Iff Cube(a)
v Cube(b) Is true.

The truth-functional interpretation of the FO
statements given a fixed UD is called the truth-
functional expansion of the original FO statement
with regard to that UD.

Truth-Functional Expansions and
Proving FO Invalidity

 Truth-Functional expansions can be used to
prove FO invalidity. Example (13.25):

dx Cube(x) A Ix Small(x)

+.3x (Cube(x) A Small(x)) UD = {a,b}

T T F T F T T
(Cube(a) v Cube(b)) A (Small(a) v Small(b))

".(Cube(a) A Small(a)) v (Cube(b) A Small(b))
T F F F F F T
This shows that there is a world in which the premise is

true and the conclusion false. Hence, the original argument
IS FO Invalid.

Truth-Functional Expansions and

Proving FO Validity

If the truth-functional expansion of an FO argument in
some UD is truth-functionally invalid, then the original
argument is FO invalid, but if it is truth-functionally valid,
then that does not mean that the original argument is FO
valid.

For example, with UD = {a}, the expansion of the
argument would be truth-functionally valid. In general, it is
always possible that adding one more object to the UD
makes the expansion invalid.

Thus, we can’t prove validity using the expansion method,
as we would have to show the expansion to be valid in
every possible UD, and there are infinitely many UD’s.

The expansion method is therefore only good for proving
iInvalidity. Indeed, it searches for countermodels.

The Expansion Method as a

Systematic Procedure

o Still, the expansion method can be made
Into a systematic procedure to test for FO

Invalidity:

— Step 1: Expand FO argument (which can be

done systematically) in UD = {a}.

— Step 2: Use some systematic proced
truth-table method or truth-tree met

ure (e.g.
nod) to test

whether the expansion is TF invalic
Invalid, then stop: the FO argument
Invalid. Otherwise, expand FO argu
= {a,b}, and repeat step 2.

AfItiIs TF
IS FO
ment in UD

Incompleteness of
the Expansion Method

* We saw that the expansion method is not a complete test

for FO validity.

 However, it is also an incomplete test for FO invalidity!
* Proof: Consider the following argument:

VXVY(X2Y — ((X>Y v y>X) A
—(X>y A y>X)))
VXVYVZ((X>Y A y>Z) — X>2)

S AXVY (XY — X>Y)

For any UD with an arbitrarily
large yet finite number of objects,
the expansion of this argument
will be truth-functionally valid.
However, the argument is FO
invalid (consider the natural
numbers)!

A More Focused Search

A further drawback of the expansion method is
that the search for a counterexample Is very
Inefficient.

» A focused search for a counterexample is more
efficient:

— (13.25) I want there to be at least one cube, and at least
one small object, but no small cubes. So, If we have a
cube, a, then a cannot be small, so | need a second
object, b, which is small, but not a cube.
Counterexample, so the argument is invalid.

Advantage of a Focused Search

 The focused search method is like the indirect
truth-table method.

 Indeed, like the indirect truth-table method, the
focused search method can prove validity:

— (13.24) | want there to be at least one small cube. Let us
call this small cube a. How, | don’t want it to be true
that there is at least one cube and at least one small
object. However, a is both a cube and small.
Contradiction, so | can’t generate a counterexample.

Truth-Trees for Predicate Logic

 Like the direct method, the focused search
method needs to be systematized, especially
since the search often involves making
choices.

 Fortunately, the truth-tree method, which
systematized the indirect truth-table method
In truth-functional logic, can be extended
for predicate logic.

Truth-Tree Rules for Quantifiers

VX (X) —3Ix o(x)
IX —=(X) VX —¢(X)
IX@(x) N VX ¢(X)
¢(C) ¢(C)
with ‘c’ a with ‘c’ any
new constant constant

In that branch

Truth-Tree Example |

3x Cube(x) A Ix Small(x)
—3x (Cube(x) A Small(x))

3x Cube(X) \
3x Small(x) \
VX —(Cube(x) A Small(x))
Cube(a)
Small(b)

—(Cube(a) A Small(a))
—(Cube(b) A Small(b))

ﬁCube(a)/\ﬁSmall(a)

X

N
Open branch’ —|CUbe(b) —|Sma||(b)

- - - —
so It’s invalid X

Truth-Tree Example I

Ix (Cube(x) A Small(x))
—(3x Cube(x) A Ix Small(x))

Cube(d) A Small(a)
Cube(a)
Small(a)

/\

—3x Cube(x) ¥ —3IxSmall(x)

VX —Cube(x) VX —Small(x)
—Cube(a) —Small(a)
X X

All branches close,
so it’s valid

Finished Trees

e A branch is closed If it contains a statement and Its
negation.

e An open branch is finished if every statements in
that branch that has not been decomposed is either
a literal or a universal that has been instantiated
for every constant in that branch.

o A tree is finished if all its branches are closed (in
which case the statements at the root cannot be
satisfied), or If it contains a finished open branch
(in which case the statements can be satisfied).

Infinite Trees

vx 3y Likes(x,y)

Jy Likes(a,y)
Likes(a,b)

Jy Likes(b,y)
Likes(b,c)

Jy Likes(c,y)
Likes(c,d)

Jy Likes(d,y)
Likes(d,e)

This tree will
never be finished,
SO the tree method
will not give us
any answer!

	Truth Trees for �Predicate Logic
	Running Examples
	Truth-Functional Expansions
	Truth-Functional Expansions and Proving FO Invalidity
	Truth-Functional Expansions and Proving FO Validity
	The Expansion Method as a Systematic Procedure
	Incompleteness of �the Expansion Method
	A More Focused Search
	Advantage of a Focused Search
	Truth-Trees for Predicate Logic
	Truth-Tree Rules for Quantifiers
	Truth-Tree Example I
	Truth-Tree Example II
	Finished Trees
	Infinite Trees

