Resolution and Davis-Putnam

Computability and Logic

Logic Recap: Expressive Completeness

Rewriting Statements

- We can rephrase (rewrite) any occurrence of $P \leftrightarrow Q$ as $(P \rightarrow Q) \land (Q \rightarrow P)$.
- And, $P \rightarrow Q$ itself can rewritten as $\neg P \lor Q$
- Therefore, any traditional propositional logic expression (i.e. those using ¬, ∧, ∨, →, ↔) can be rewritten into one that only uses the Boolean connectives (¬, ∧, ∨).

Negation Normal Form

- *Literals*: Atomic Sentences or negations thereof.
- *Negation Normal Form*: An expression built up with '∧', '∨', and literals.
- Using repeated DeMorgan and Double Negation, we can transform *any* expression built up with '∧', '∨', and '¬' into an expression that is in Negation Normal Form.
- Example: $\neg((A \lor B) \land \neg C) \Leftrightarrow$ (DeMorgan) $\neg(A \lor B) \lor \neg \neg C \Leftrightarrow$ (Double Neg, DeM) $(\neg A \land \neg B) \lor C$

Disjunctive Normal Form

- *Disjunctive Normal Form*: A generalized disjunction of generalized conjunctions of literals.
- Using repeated distribution of ∧ over ∨, *any* statement in Negation Normal Form can be written in Disjunctive Normal Form.
- Example:

 $\begin{array}{l} (A \lor B) \land (C \lor D) \Leftrightarrow \quad (Distribution) \\ [(A \lor B) \land C] \lor [(A \lor B) \land D] \Leftrightarrow \quad (Distribution \ (2x)) \\ (A \land C) \lor (B \land C) \lor (A \land D) \lor (B \land D) \end{array}$

DNF and SOP

- In computer circuitry design, the term Sum Of Products (SOP) is often used, since if you consider T as '1', and F as '0', then ∧ is like multiplication, and ∨ is like addition (where anything > 0 is considered 1)
 - Thus, in computer circuitry design, (A∧C) ∨ (B∧C) ∨ (A∧D) ∨ (B∧D) is often written as: AC + BC + AD + BD ('Sum of Products')

А	В	AB	Α	В	A+B
1	1	1	1	1	1
1	0	0	1	0	1
0	1	0	0	1	1
0	0	0	0	0	0

Conjunctive Normal Form (or: Product of Sums: POS)

- *Conjunctive Normal Form*: A generalized conjunction of generalized disjunctions of literals.
- Using repeated distribution of ∨ over ∧, *any* statement in Negation Normal Form can be written in Conjunctive Normal Form.
- Example:

 $\begin{array}{l} (A \land B) \lor (C \land D) \Leftrightarrow \quad (Distribution) \\ [(A \land B) \lor C] \land \quad [(A \land B) \lor D] \Leftrightarrow \quad (Distribution \ (2x)) \\ (A \lor C) \land \quad (B \lor C) \land \quad (A \lor D) \land (B \lor D) \end{array}$

Special Cases

- Any literal (such as A or ¬B) is in NNF, DNF (it is a disjunction whose only disjunct is a conjunction whose only conjunct is that literal), and CNF
- A conjunction of literals (e.g. ¬A ∧ ¬B ∧ C) is in NNF, DNF (a disjunction whose only disjunct is that conjunction), and CNF
- A disjunction of literals is in NNF, DNF, and CNF

Summing Up

- Any traditional propositional logic expression can be transformed into a Boolean Logic expression
- Any Boolean logic expression can be put into NNF
- Any NNF expression can be put into CNF
- Any NNF expression can be put into CNF
- So, any traditional propositional logic expression can be put into NNF, CNF, and DNF

Expressing *any* truth-function using 'and', 'or', and 'not'

- Even better: no matter what additional truth-functional operators you define (e.g. XOR, ID, "If ...Then ... Else", etc.), you can always re-express them in terms of the Boolean connectives ∧, ∨, and ¬!
- Indeed, *any* truth-function, no matter how complex, or defined over how many atomic statements, can be expressed in terms of the Boolean connectives ∧, ∨, and ¬!
- 'Proof': generalize from example on next slide.

Expressive Completeness

Note that this works for any truth-function defined over any number of atomic statements. We thus say that $\{\land, \lor, \neg\}$ is expressively complete!!

CNF and Truth-Tables

• We can also generate a CNF that captures any truth-function from its truth-table:

			Step 1:	Step 2:
Р	Q	P*Q	Create term for	Disjunct all terms
Т	Т	F	$\Rightarrow P \land Q$	$\Rightarrow (P \land Q) \lor (\neg P \land \neg Q)$
Т	F	T		Step 3:
F	T	T		Negate!
F	F	F	$\Rightarrow \neg P \land \neg Q$	$\Rightarrow \neg ((P \land Q) \lor (\neg P \land \neg Q)), \text{ i.e.}$ $\Rightarrow \neg (P \land Q) \land \neg (\neg P \land \neg Q), \text{ i.e.}$
				$\Rightarrow (\neg P \lor \neg Q) \land (P \lor Q) (CNF!)$

CNF and Truth-Tables II

• More directly:

Step 1: Create negated 'term' for P*Q every 'F': Ρ Q Т Т $F \Rightarrow \neg P \lor \neg Q$ Step 2: Conjunct terms Т Т F $\Rightarrow (\neg P \lor \neg Q) \land (P \lor Q) (CNF!)$ Т F T $F \implies P \lor Q$ F F

Resolution

Resolution

- Resolution is, like the tree method, a method to check for the logical consistency of a set of statements.
- Resolution requires all sentences to be put into CNF.
- A set of sentences in CNF is made into a *clause set* S: a set of clauses, where a *clause* C is a set of literals.
 - Each clause C represents a disjunction of literals
 - The clause set S represents a conjunction of disjunctions of literals

Resolution Rule

• Clauses are resolved using the *resolution rule*, and the resulting clause (the *resolvent*) is added to the clause set:

$$L \in C_1$$

$$\underline{L' \in C_2}$$

$$C_{\text{NEW}} = C_1 / L \cup C_2 / L'$$

$\neg(P \leftrightarrow Q) \quad \Leftrightarrow (Equiv)$ $\neg((P \rightarrow Q) \land (Q \rightarrow P)) \Leftrightarrow (Impl)$ $\neg((\neg P \lor Q) \land (\neg Q \lor P)) \iff (DeM)$ $\neg(\neg P \lor Q) \lor \neg(\neg Q \lor P) \iff (DeM, DN)$ $(P \land \neg Q) \lor (Q \land \neg P) \iff (Dist)$ $((P \land \neg Q) \lor Q) \land ((P \land \neg Q) \lor \neg P) \iff (Dist)$ $(P \lor Q) \land (\neg Q \lor Q) \land (P \lor \neg P) \land (\neg Q \lor \neg P)$

Putting into CNF

Resolution Graph

Satisfiability

- A clause is *satisfied* by a truth-value assignment if and only if that assignment makes at least one literal in that clause true.
- A clause set is *satisfiable* if and only if there is a truthvalue assignment that satisfies all clauses in that clause set.
- Figuring out whether some clause set is satisfiable is the *satisfiability problem*. This problem is a central problem in computer science, as many problems in computer science can be reduced to a satisfiability problem.
- In our case: a set of sentences is consistent if and only if the corresponding clause set is satisfiable.

Soundness and Completeness of Resolution

- The rule of Resolution is sound, making the method of resolution sound as well (so, if the empty clause (which is a generalized disjunction of 0 disjuncts, which is a contradiction) can be resolved from a clause set, then that means that that clause set is indeed unsatisfiable.
- It can be shown that resolution is complete, i.e. that the empty clause can be resolved from any unsatisfiable clause set.

Resolutions as Derivations

$$A \lor (B \land C) \implies (A \lor B) \land (A \lor C) \implies \begin{array}{c} 1. \{A, B\} \\ 2. \{A, C\} \\ 2. \{A, C\} \\ 0 \\ A \lor B \end{pmatrix} \rightarrow (D \lor E) \qquad (\neg A \lor D \lor E) \land (\neg B \lor D \lor E) \implies \begin{array}{c} 3. \{\neg A, D, E\} \\ 1. \{A, B\} \\ 2. \{A, C\} \\ 0 \\ 1. \{A, B\} \\ 1. \{A, C\} \\ 1.$$

$$\neg A \Rightarrow 6. \{\neg A\}$$

$$\neg (C \land D) \quad \Rightarrow \ \neg C \lor \neg D \ \Rightarrow \quad 7. \ \{\neg C, \neg D\}$$

9.
$$\{C\}$$
 2,6

10.
$$\{D, E\}$$
 4,8

17.42 from LPL:

$$A \lor (B \land C)$$

 $\neg E$
 $(A \lor B) \rightarrow (D \lor E)$
 $\neg A$
 $\therefore C \land D$

Resolutions as Decision Procedures

- Resolution can be made into a decision procedure by systematically exhausting all possible resolvents (of which there are finitely many).
- This will not be very efficient unless we add some resolution strategies.

Resolution Strategies

- Clause Elimination Strategies
 - Tautology Elimination
 - Subsumption Elimination
 - Pure Literal Elimination
- Resolving Strategies
 - Unit Preference Resolution
 - Linear Resolution
 - Ordered Resolution
 - Etc.

Tautology Elimination

- A *tautologous clause* is a clause that contains an atomic statement as well as the negation of that atomic statement. E.g. {A, B, ¬A} is tautologous.
- Obviously, for any tautologous clause C, any truth-value assignment is going to satisfy C.
- Hence, with S any clause set, and with S' the clause set S with all tautologous clauses removed: S is satisfiable if and only if S' is satisfiable.

Subsumption Elimination

- A clause C₁ subsumes a clause C₂ if and only if every literal contained in C₁ is contained in C₂, i.e. C₁ ⊆ C₂. E.g. {A, B} subsumes {A, B, ¬C}
- Obviously, if C_1 subsumes C_2 , then any truthvalue assignment that satisfies C_1 will satisfy C_2 .
- Hence, with S any clause set, and S' the clause set S with all subsumed clauses removed: S is satisfiable if and only if S' is satisfiable.

Pure Literal Elimination

- A literal L is *pure* with regard to a clause set S if and only if L is contained in at least one clause in S, but L' is not.
- A clause is *pure* with regard to a clause set S if and only if it contains a pure literal.
- Obviously, with S any clause set, and with S' the clause set S with all pure clauses removed: S is satisfiable if and only if S' is satisfiable.

Unit Preference Resolution

- A *unit clause* is a clause that contains one literal.
- Unit preference resolution tries to resolve using unit clauses first.

Unit Literal Deletion and Splitting

- For any clause set S, S_L is the clause set that is generated from S as follows:
 - Remove all clauses from S that contain L.
 - Remove all instances of L' from all other clauses
- Obviously, with $C = \{L\} \in S$, S is satisfiable if and only if S_L is satisfiable.
- It is also easy to see that for any clause set S, and any literal L: S is satisfiable if and only if S_L is satisfiable or $S_{L'}$ is satisfiable.
- The last observation suggests a splitting strategy that forms the basis of Davis-Putnam.

Davis-Putnam

Davis-Putnam

• Recursive routine Satisfiable(S) returns true iff S is satisfiable:

```
\label{eq:stable} \begin{split} & \text{boolean Satisfiable}(S) \\ & \text{begin} \\ & \text{if } S = \{\} \text{ return true;} \\ & \text{if } S = \{\{\}\} \text{ return false;} \\ & \text{select } L \in \text{lit}(S); \\ & \text{return Satisfiable}(S_L) \parallel \text{Satisfiable}(S_{L'}); \\ & \text{end} \end{split}
```


Making Davis-Putnam Efficient: Adding Bells and Whistles

- The routine on the previous slide is not very efficient. However, we can easily make it more efficient:
 - return false as soon as $\{\} \in S$
 - add the unit rule: if $\{L\} \in S$ return Satisfiable (S_L)
 - strategically add clause deletion strategies (e.g. subsumption, pure literal)
 - strategically choose the literal on which to split
- As far as I have gathered from the ATP literature, such efficient Davis-Putnam routines are credited to do well in comparison to other ATP routines.

Davis-Putnam and Truth-Trees

- Observation: Davis-Putnam looks a bit like Truth-Tree method. In fact, on the next slides, we'll see:
 - Like TT, 'check marks' can be used in representation of DP
 - Like TT, whole statements can be used (i.e. no need for clauses)
- How does Davis-Putnam differ from Truth-Trees?
 - Davis-Putnam is an 'inside-out' approach: it assigns a truth-value to atomic statements and determines the consequences of that assignment for the more complex statements composed of those atomic statements.
 - Truth-Trees is an 'outside-in' approach: it assigns truthvalues to complex statements and determines the consequences of that assignment for the smaller statements it is composed of.

Can we do DP without CNF?

- Sure, simply consider a set of statements, and see what happens to each of the statements when some atomic claim is set to true or false, respectively.
- For example, when we set A to True:
 - $(A \lor B) \rightarrow (D \lor E)$ becomes
 - (True $\lor B$) \rightarrow (D $\lor E$) becomes
 - True \rightarrow (D \vee E) becomes
 - $D \lor E$

Rules for DP without CNF

¬ True ⇒ False	True $\land P$ $\Rightarrow P$	True \lor P \Rightarrow True	$True \to P \\ \Rightarrow P$	True \leftrightarrow P \Rightarrow P
– False ⇒ True	$False \land P \\ \Rightarrow False$	$False \lor P \\ \Rightarrow P$	$False \rightarrow P \\ \Rightarrow True$	$False \leftrightarrow P \\ \Rightarrow \neg P$
	$P \land True \Rightarrow P$	$P \lor True \\ \Rightarrow True$	$P \rightarrow True \\ \Rightarrow True$	$P \leftrightarrow True \\ \Rightarrow P$
	$P \wedge False \Rightarrow False$	$P \lor False \\ \Rightarrow P$	$P \rightarrow False \\ \Rightarrow \neg P$	$P \leftrightarrow False \\ \Rightarrow \neg P$

Same example, but using check mark

Can DP and TT be combined?

- OK, Davis-Putnam now really starts to look like the truth tree method...
- Can these two methods be combined into one method?
- Sure!
- Project: Investigate efficiency of this method

Example: DP and TT Combo

$$\neg A \rightarrow B \quad \sqrt[]{}_{4}$$

$$C \rightarrow (D \lor E) \quad \sqrt[]{}_{2}$$

$$D \rightarrow \neg C \quad \sqrt[]{}_{3}$$

$$A \rightarrow \neg E$$

$$\neg (C \rightarrow B) \quad \sqrt[]{}_{1}$$

$$C$$

$$\neg B$$

$$D \lor E \quad \sqrt[]{}_{6}$$

$$\neg D$$

$$\neg \neg A \quad \sqrt[]{}_{5}$$

$$A$$

$$E$$

$$\neg E$$

$$\neg E$$

$$\times_{7}$$

17.43 from LPL: $\neg A \rightarrow B$ $C \rightarrow (D \lor E)$ $D \rightarrow \neg C$ $A \rightarrow \neg E$ $\therefore C \rightarrow B$

- 1. TT rule: decompose $\neg(C \rightarrow B)$
- 2. Unit rule: reduce with regard to C
- 3. Unit rule: reduce with regard to C
- 4. Unit rule: reduce with regard to $\neg B$
- 5. TT rule: decompose $\neg \neg A$
- 6. Unit rule: reduce with regard to -B
- 7. Close between E and $\neg E$

Exercise

- Show the argument below to be valid using:
 - 1. Resolution
 - 2. Davis-Putnam (on clauses)
 - 3. Davis-Putnam (on original statements)
 - 4. Davis-Putnam and Truth-Tree combo

$$Q \lor \neg S$$

(P \land Q) \leftrightarrow R
$$\neg S \rightarrow R$$

$$\neg P \rightarrow (O \leftrightarrow S)$$

Projects

- Compare and contrast efficiency of different methods
 - How is efficiency effected by
 - Using Clause elimination strategies
 - Using Unit rule
 - Not putting into CNF
 - Etc.

– What about combinations of different methods?