
Resolution and Davis-Putnam 

Computability and Logic 



Logic Recap:  
Expressive Completeness 



Rewriting Statements 

• We can rephrase (rewrite) any occurrence 
of P ↔ Q as (P → Q) ∧ (Q → P). 

• And, P → Q itself can rewritten as ¬P ∨ Q  
• Therefore, any traditional propositional 

logic expression (i.e. those using ¬, ∧, ∨, 
→, ↔) can be rewritten into one that only 
uses the Boolean connectives (¬, ∧, ∨). 



Negation Normal Form 

• Literals: Atomic Sentences or negations thereof. 
• Negation Normal Form: An expression built up 

with ‘∧’, ‘∨’, and literals. 
• Using repeated DeMorgan and Double Negation, 

we can transform any expression built up with ‘∧’, 
‘∨’, and ‘¬’ into an expression that is in Negation 
Normal Form. 

• Example: ¬((A ∨ B) ∧ ¬C) ⇔   (DeMorgan) 
¬(A ∨ B) ∨ ¬¬C ⇔   (Double Neg, DeM) 
(¬A ∧ ¬B) ∨ C 



Disjunctive Normal Form 

• Disjunctive Normal Form: A generalized 
disjunction of generalized conjunctions of literals. 

• Using repeated distribution of ∧ over ∨, any 
statement in Negation Normal Form can be 
written in Disjunctive Normal Form. 

• Example: 
 (A∨B) ∧ (C∨D) ⇔   (Distribution) 

[(A∨B)∧C] ∨ [(A∨B)∧D] ⇔   (Distribution (2x)) 
(A∧C) ∨ (B∧C) ∨ (A∧D) ∨ (B∧D) 



DNF and SOP 

• In computer circuitry design, the term Sum Of Products 
(SOP) is often used, since if you consider T as ‘1’, and F 
as ‘0’, then ∧ is like multiplication, and ∨ is like addition 
(where anything > 0 is considered 1) 
– Thus, in computer circuitry design, (A∧C) ∨ (B∧C) ∨ (A∧D) ∨ 

(B∧D) is often written as: AC + BC + AD + BD (‘Sum of 
Products’) 
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Conjunctive Normal Form 
(or: Product of Sums: POS) 

• Conjunctive Normal Form: A generalized 
conjunction of generalized disjunctions of literals. 

• Using repeated distribution of ∨ over ∧, any 
statement in Negation Normal Form can be 
written in Conjunctive Normal Form. 

• Example: 
 (A∧B) ∨  (C∧D) ⇔   (Distribution) 

[(A∧B) ∨ C] ∧  [(A∧B) ∨ D] ⇔   (Distribution (2x)) 
(A∨C) ∧  (B∨C) ∧  (A∨D) ∧ (B∨D) 



Special Cases 

• Any literal (such as A or ¬B) is in NNF, DNF (it 
is a disjunction whose only disjunct is a 
conjunction whose only conjunct is that literal), 
and CNF 

• A conjunction of literals (e.g. ¬A ∧ ¬B ∧ C) is in 
NNF, DNF (a disjunction whose only disjunct is 
that conjunction), and CNF 

• A disjunction of literals is in NNF, DNF, and CNF 



Summing Up 

• Any traditional propositional logic expression can 
be transformed into a Boolean Logic expression 

• Any Boolean logic expression can be put into 
NNF 

• Any NNF expression can be put into CNF 
• Any NNF expression can be put into CNF 
• So, any traditional propositional logic expression 

can be put into NNF, CNF, and DNF 



Expressing any truth-function 
using ‘and’, ‘or’, and ‘not’ 

• Even better: no matter what additional truth-
functional operators you define (e.g. XOR, ID, “If 
…Then … Else”, etc.), you can always re-express 
them in terms of the Boolean connectives ∧, ∨, 
and ¬! 

• Indeed, any truth-function, no matter how 
complex, or defined over how many atomic 
statements, can be expressed in terms of the 
Boolean connectives ∧, ∨, and ¬! 

• ‘Proof’: generalize from example on next slide. 



Expressive Completeness 

P Q P*Q 
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⇒ P∧¬Q 

⇒ ¬P∧Q 

⇒ (P∧¬Q) ∨ (¬P∧Q) 

Step 1: 
Create term for 
every ‘T’: 

Step 2: 
Disjunct all terms 

(note: expression is in DNF) 

Note that this works for any truth-function defined over 
any number of atomic statements. 
We thus say that {∧, ∨, ¬} is expressively complete!! 



CNF and Truth-Tables 

• We can also generate a CNF that captures any truth-
function from its truth-table: 
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⇒ P ∧ Q 

⇒ ¬P ∧ ¬Q 

⇒ (P∧Q) ∨ (¬P∧ ¬Q) 

Step 1: 
Create term for 
every ‘F’: 

Step 2: 
Disjunct all terms 

Step 3: 
Negate! 

⇒¬((P∧Q) ∨ (¬P∧ ¬Q)), i.e. 
⇒¬(P∧Q) ∧ ¬(¬P∧ ¬Q), i.e. 
⇒ (¬P ∨ ¬ Q) ∧ (P ∨ Q)  (CNF!) 



CNF and Truth-Tables II 

• More directly: 

P Q P*Q 

T 

T 

T 
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T 

T 
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⇒ ¬P ∨ ¬Q 

⇒ P ∨ Q 

Step 1: 
Create negated ‘term’ for 
every ‘F’: 

Step 2: 
Conjunct terms 

⇒ (¬P ∨ ¬ Q) ∧ (P ∨ Q)  (CNF!) 



Resolution 



Resolution 

• Resolution is, like the tree method, a method to check for 
the logical consistency of a set of statements. 

• Resolution requires all sentences to be put into CNF. 
• A set of sentences in CNF is made into a clause set S: a set 

of clauses, where a clause C is a set of literals. 
– Each clause C represents a disjunction of literals 
– The clause set S represents a conjunction of disjunctions of literals 



Resolution Rule 

• Clauses are resolved using the resolution 
rule, and the resulting clause (the resolvent) 
is added to the clause set: 

L ∈ C1 

L’ ∈ C2 

CNEW = C1/L ∪ C2/L’ 



Putting into CNF 

¬(P ↔ Q) 

¬((P → Q) ∧ (Q → P)) 

¬((¬P ∨ Q) ∧ (¬Q ∨ P)) 

¬(¬P ∨ Q) ∨ ¬(¬Q ∨ P) 

(P ∧ ¬Q) ∨ (Q ∧ ¬P) 

((P ∧ ¬Q) ∨ Q) ∧ ((P ∧ ¬Q) ∨ ¬P) 

(P ∨ Q) ∧ (¬Q ∨ Q) ∧ (P ∨ ¬P) ∧ (¬Q ∨ ¬P) 

⇔ (Equiv) 

⇔ (Impl) 

⇔ (DeM) 

⇔ (DeM, DN) 

⇔ (Dist) 

⇔ (Dist) 



Resolution Graph 

¬(P ↔ Q) ¬(Q ↔ R) ¬(P ↔ R) 

(P ∨ Q) ∧ (¬P ∨ ¬Q) (Q ∨ R) ∧ (¬Q ∨ ¬R) (P ∨ R) ∧ (¬P ∨ ¬R) 

{¬P, ¬Q} {P, Q} {Q, R} {¬Q, ¬R} {P, R} {¬P, ¬R} 

{¬P, R} 

{¬P} {P} 

{} 

{P, ¬Q} 

⇓ ⇓ ⇓ 

⇓ ⇓ ⇓ 



Satisfiability 
• A clause is satisfied by a truth-value assignment if and 

only if that assignment makes at least one literal in that 
clause true. 

• A clause set is satisfiable if and only if there is a truth-
value assignment that satisfies all clauses in that clause set. 

• Figuring out whether some clause set is satisfiable is the 
satisfiability problem. This problem is a central problem in 
computer science, as many problems in computer science 
can be reduced to a satisfiability problem.  

• In our case: a set of sentences is consistent if and only if 
the corresponding clause set is satisfiable. 



Soundness and Completeness of 
Resolution 

• The rule of Resolution is sound, making the 
method of resolution sound as well (so, if the 
empty clause (which is a generalized disjunction 
of 0 disjuncts, which is a contradiction) can be 
resolved from a clause set, then that means that 
that clause set is indeed unsatisfiable. 

• It can be shown that resolution is complete, i.e. 
that the empty clause can be resolved from any 
unsatisfiable clause set. 
 



Resolutions as Derivations 
{A, B} 
{A, C} 
{¬A, D, E} 
{¬B, D, E} 
{¬E} 
{¬A} 
{¬C, ¬D} 
{B} 
{C} 
{D, E} 
{D} 
{¬D} 
{} 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

A ∨ (B ∧ C) 

(A ∨ B) → (D ∨ E) 

¬A 
¬E 

¬(C ∧ D) 

(A ∨ B) ∧ (A ∨ C) ⇒ ⇒ 

⇒ 
⇒ 

⇒ ¬C ∨ ¬D ⇒ 

¬(A ∨ B) ∨ (D ∨ E) (¬A ∧ ¬B) ∨ (D ∨ E) 

(¬A ∨ D ∨ E) ∧ (¬B ∨ D ∨ E) ⇒ 

⇒ 
⇓ ⇑ 

1,6 
2,6 
4,8 
5,10 
7,9 
11,12 

17.42 from LPL: 
A ∨ (B ∧ C) 
¬E 
(A ∨ B) → (D ∨ E) 
¬A 
∴ C ∧ D 



Resolutions as Decision 
Procedures 

• Resolution can be made into a decision 
procedure by systematically exhausting all 
possible resolvents (of which there are 
finitely many). 

• This will not be very efficient unless we add 
some resolution strategies. 



Resolution Strategies 

• Clause Elimination Strategies 
– Tautology Elimination 
– Subsumption Elimination 
– Pure Literal Elimination 

• Resolving Strategies 
– Unit Preference Resolution 
– Linear Resolution 
– Ordered Resolution 
– Etc. 



Tautology Elimination 

• A tautologous clause is a clause that contains an 
atomic statement as well as the negation of that 
atomic statement. E.g. {A, B, ¬A} is tautologous. 

• Obviously, for any tautologous clause C, any 
truth-value assignment is going to satisfy C. 

• Hence, with S any clause set, and with S’ the 
clause set S with all tautologous clauses removed: 
S is satisfiable if and only if S’ is satisfiable. 



Subsumption Elimination 

• A clause C1 subsumes a clause C2 if and only if 
every literal contained in C1 is contained in C2, i.e. 
C1 ⊆ C2. E.g. {A, B} subsumes {A, B, ¬C} 

• Obviously, if C1 subsumes C2 , then any truth-
value assignment that satisfies C1 will satisfy C2. 

• Hence, with S any clause set, and S’ the clause set 
S with all subsumed clauses removed: S is 
satisfiable if and only if S’ is satisfiable. 



Pure Literal Elimination 

• A literal L is pure with regard to a clause set S if 
and only if L is contained in at least one clause in 
S, but L’ is not. 

• A clause is pure with regard to a clause set S if 
and only if it contains a pure literal. 

• Obviously, with S any clause set, and with S’ the 
clause set S with all pure clauses removed: S is 
satisfiable if and only if S’ is satisfiable. 
 



Unit Preference Resolution 

• A unit clause is a clause that contains one 
literal. 

• Unit preference resolution tries to resolve 
using unit clauses first. 



Unit Literal Deletion and 
Splitting 

• For any clause set S, SL is the clause set that is 
generated from S as follows: 
– Remove all clauses from S that contain L. 
– Remove all instances of L’ from all other clauses 

• Obviously, with C = {L} ∈ S, S is satisfiable if 
and only if SL is satisfiable. 

• It is also easy to see that for any clause set S, and 
any literal L: S is satisfiable if and only if SL is 
satisfiable or SL’ is satisfiable.  

• The last observation suggests a splitting strategy 
that forms the basis of Davis-Putnam. 



Davis-Putnam 



Davis-Putnam 

• Recursive routine Satisfiable(S) returns true iff S is 
satisfiable: 

boolean Satisfiable(S) 
begin 

if S = {} return true; 
if S = {{}} return false; 
select L ∈ lit(S); 
return Satisfiable(SL) || Satisfiable(SL’); 

end 



Davis-Putnam as Trees 

{P, ¬Q} 
{P, Q} 

{¬P, Q} 
{¬P, ¬Q} 

(P) (¬P) 

{Q} 
{¬Q} 

(¬Q) 

{} 

(Q) 

{} 

{Q} 
{¬Q} 

(¬Q) 

{} 

(Q) 

{} 



(A) (¬A) 

{N, Q} 
{¬N} 

(¬N) 
{} 
(N) 

{} 

{} 
{¬Q} 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

A → Q 

¬A ∨ N ∨ Q 

Step 1. Negate  
Conclusion 

¬(A → Q) 

Step 2: Put into CNF 

¬N ∧ A 
A ∧ ¬Q 

Step 3: Make into clauses 
{¬A, N, Q} 
{¬N} {A} 
{A} {¬Q} 

Step 4: Put clause set 
at root of tree 

{¬A, N, Q} 
{¬N} 
{A} 

{¬Q} Step 5: Do DP! 

{¬Q} 

{¬N} 

{¬Q} 

× 

{¬Q} 
{Q} 

(¬N) (N) 
{} 

{¬Q} 
{} 

{¬Q} (Q) (¬Q) 
{} 
× 

{} 
× 

(Q) (¬Q) 
{} 
× 

{} 
× 

(Q) (¬Q) 
{} 
× 

{} 
× 

(Q) (¬Q) 
{} 
× 



Simple Example  
Invalid Argument 

A → B 
¬A 

¬B 

¬A ∨ B 

¬A 

¬¬B B 

{¬A , B} 

{¬A} 

{B} 
(A) (¬A) 

{B} {B} 
{} 
× 

(B) (¬B) 

{} 
× 

○ 
Reached empty clause set: 
So set of statements in root are consistent 
So original argument is invalid 
Model is given by branches: A False and B True 



Making Davis-Putnam Efficient: 
Adding Bells and Whistles 

• The routine on the previous slide is not very 
efficient. However, we can easily make it more 
efficient: 
– return false as soon as {}∈S 
– add the unit rule: if {L}∈S return Satisfiable(SL) 
– strategically add clause deletion strategies (e.g. 

subsumption, pure literal) 
– strategically choose the literal on which to split 

• As far as I have gathered from the ATP literature, 
such efficient Davis-Putnam routines are credited 
to do well in comparison to other ATP routines. 



(A) (¬A) 

{N, Q} 
{¬N} 

(¬N) 

{} 

(N) 

{} 
{¬Q} 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

A → Q 

¬A ∨ N ∨ Q 

Step 1. Negate  
Conclusion 

¬(A → Q) 

Step 2: Put into CNF 

¬N ∧ A 
A ∧ ¬Q 

Step 3: Make into clauses 
{¬A, N, Q} 
{¬N} {A} 
{A} {¬Q} 

Step 4: Put clause set 
at root of tree 

{¬A, N, Q} 
{¬N} 
{A} 

{¬Q} Step 5: Do DP! 

{¬Q} 

{¬N} 

{¬Q} {¬Q} 
{Q} 

{} 
× 

(Q) (¬Q) 
{} 
× 

× 

× 

Same example as before,  
but stopping early (i.e. as 
soon as {} is one of clauses)  



(A) 

{N, Q} 
{¬N} 

(¬N) 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

A → Q 

¬A ∨ N ∨ Q 

Step 1. Negate  
Conclusion 

¬(A → Q) 

Step 2: Put into CNF 

¬N ∧ A 
A ∧ ¬Q 

Step 3: Make into clauses 
{¬A, N, Q} 
{¬N} {A} 
{A} {¬Q} 

Step 4: Put clause set 
at root of tree 

{¬A, N, Q} 
{¬N} 
{A} 

{¬Q} Step 5: Do DP! 

{¬Q} 

{¬Q} 
{Q} 

{} 
× 

(Q) 
Same example as before,  
but using unit rule 



Davis-Putnam and Truth-Trees 

• Observation: Davis-Putnam looks a bit like Truth-
Tree method. In fact, on the next slides, we’ll see: 
– Like TT, ‘check marks’ can be used in representation of DP 
– Like TT, whole statements can be used (i.e. no need for clauses)  

• How does Davis-Putnam differ from Truth-Trees?  
– Davis-Putnam is an ‘inside-out’ approach: it assigns a 

truth-value to atomic statements and determines the 
consequences of that assignment for the more complex 
statements composed of those atomic statements. 

– Truth-Trees is an ‘outside-in’ approach: it assigns truth-
values to complex statements and determines the 
consequences of that assignment for the smaller 
statements it is composed of. 



(A) (¬A) 

{N, Q} 
(¬N) 

{} 

(N) 
{} 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

A → Q 

¬A ∨ N ∨ Q 

Step 1. Negate  
Conclusion 

¬(A → Q) 

Step 2: Put into CNF 

¬N ∧ A 
A ∧ ¬Q 

Step 3: Make into clauses 
{¬A, N, Q} 
{¬N} {A} 
{A} {¬Q} 

Step 4: Put clause set 
at root of tree 

{¬A, N, Q} 
{¬N} 
{A} 

{¬Q} Step 5: Do DP! 

{Q} 

{} 
(Q) (¬Q) 

{} 

× 

× Same example as before,  
but using check mark system   

√1 

√2 

√3 

√4 

√5 

√6 

× × 



(A) 

{N, Q} 
(¬N) 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

A → Q 

¬A ∨ N ∨ Q 

Step 1. Negate  
Conclusion 

¬(A → Q) 

Step 2: Put into CNF 

¬N ∧ A 
A ∧ ¬Q 

Step 3: Make into clauses 
{¬A, N, Q} 
{¬N} {A} 
{A} {¬Q} 

Step 4: Put clause set 
at root of tree 

{¬A, N, Q} 
{¬N} 
{A} 

{¬Q} Step 5: Do DP! 

{Q} 

{} 
(Q) Same example as before,  

but using check mark system 
and unit rule   

√1 

√2 

√3 

√4 

√5 

√6 

× 



(A) 

{N, Q} 
(¬N) 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

A → Q 

¬A ∨ N ∨ Q 

Step 1. Negate  
Conclusion 

¬(A → Q) 

Step 2: Put into CNF 

¬N ∧ A 
A ∧ ¬Q 

Step 3: Make into clauses 
{¬A, N, Q} 
{¬N} {A} 
{A} {¬Q} 

Step 4: Put clause set 
at root of tree 

{¬A, N, Q} 
{¬N} 
{A} 

{¬Q} Step 5: Do DP! 

{Q} 
Same example as before,  
but using check mark system, 
unit rule, and TT rule that any  
branch with atomic P and ¬P 
can be closed  

√1 

√2 

√3 

√4 

√5 

√6 

× 



Can we do DP without CNF? 

• Sure, simply consider a set of statements, and see 
what happens to each of the statements when some 
atomic claim is set to true or false, respectively. 

• For example, when we set A to True: 
–  (A ∨ B) → (D ∨ E) becomes  
– (True ∨ B) → (D ∨ E) becomes  
– True → (D ∨ E) becomes  
– D ∨ E 



Rules for DP without CNF 
¬ True 
⇒ False 

¬ False 
⇒ True 

True ∧ P 
⇒ P 

False ∧ P 
⇒ False 

P ∧ True 
⇒ P 

P ∧ False 
⇒ False 

True ∨ P 
⇒ True 

False ∨ P 
⇒ P 

P ∨ True 
⇒ True 

P ∨ False 
⇒ P 

True → P 
⇒ P 

False → P 
⇒ True 

P → True 
⇒ True 

P → False 
⇒ ¬P 

True ↔ P 
⇒ P 

False ↔ P 
⇒ ¬P 

P ↔ True 
⇒ P 

P ↔ False 
⇒ ¬P 



(A) (¬A) 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

A → Q 

Step 1. Negate  
Conclusion 

¬(A → Q) 

Step 2: Put statements 
at root of tree 

Step 3: Do DP! 

× × 

× 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

¬(A → Q) 

(True) 
False 
False 

N ∨ Q 
¬N 
¬Q (N) (¬N) 

(True) 
False 
¬Q 

Q 
(True) 
¬Q (Q) (¬Q) 

× 
(True) 

(True) 
False 

False 



(A) (¬A) 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

A → Q 

Step 1. Negate  
Conclusion 

¬(A → Q) 

Step 2: Put statements 
at root of tree 

Step 3: Do DP! 

× × 

× 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

¬(A → Q) 

False 
False 

N ∨ Q 
¬N 
¬Q (N) (¬N) 

False 
¬Q 

Q 
¬Q (Q) (¬Q) 

× 
False False 

Same example, but  
leaving out the True’s 



(A) (¬A) 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

A → Q 

Step 1. Negate  
Conclusion 

¬(A → Q) 

Step 2: Put statements 
at root of tree 

Step 3: Do DP! 

× × 

× 

A → (N ∨ Q) 
¬(N ∨ ¬A) 

¬(A → Q) 

False 
False 

N ∨ Q 
¬N 
¬Q 

(N) (¬N) 

False Q 
(Q) (¬Q) 

× 
False False 

Same example, but  
using check mark 
system 

√1 

√2 

√3 

√4 
√5 
√6 

√7 



17.42 from LPL: 
A ∨ (B ∧ C) 
¬E 
(A ∨ B) → (D ∨ E) 
¬A 
∴ C ∧ D 

A ∨ (B ∧ C) 
¬E 
(A ∨ B) → (D ∨ E) 
¬A 
¬(C ∧ D) 
 A ¬A 

¬E 
D ∨ E 
False 
¬(C ∧ D) 
 × 

B ∧ C 
¬E 
B → (D ∨ E) 
¬(C ∧ D) 
 E ¬E 

B ∧ C 
False 
¬(C ∧ D) 
 

B ∧ C 
B → D 
¬(C ∧ D) 
 × Etc. 



17.42 from LPL: 
A ∨ (B ∧ C) 
¬E 
(A ∨ B) → (D ∨ E) 
¬A 
∴ C ∧ D 

A ∨ (B ∧ C) 
¬E 
(A ∨ B) → (D ∨ E) 
¬A 
¬(C ∧ D) 
 A ¬A 

D ∨ E 
False 

× 

B ∧ C 
B → (D ∨ E) 

E ¬E 
False B → D 

× 

Using check marks: 

√1 

√2 
√3 

√4 

B ¬B 

√6 

C 
D 

False 
× 

√5 

C ¬C 

¬D False 
× 

√8 

√9 

√7 

D ¬D 

√10 

√11 False 
× 

False 
× 



Can DP and TT be combined? 
• OK, Davis-Putnam now really starts to look like 

the truth tree method…  
• Can these two methods be combined into one 

method? 
• Sure!  
• Project: Investigate efficiency of this method 



Example: DP and TT Combo 
17.43 from LPL: 
¬A → B 
C → (D ∨ E) 
D → ¬C 
A → ¬E 
∴ C → B 

×7 

¬A → B 
C → (D ∨ E) 
D → ¬C 
A → ¬E 
¬(C → B) 
C 
¬B 
D ∨ E  
¬D  
¬¬A 
A 
E 
¬E 

√1 

√2 
√3 

√4 

√5 

√6 1. TT rule: decompose ¬(C → B) 
2. Unit rule: reduce with regard to C 
3. Unit rule: reduce with regard to C 
4. Unit rule: reduce with regard to ¬B 
5. TT rule: decompose ¬¬A 
6. Unit rule: reduce with regard to ¬B 
7. Close between E and ¬E 
  



Exercise 

• Show the argument below to be valid using: 
– 1. Resolution 
– 2. Davis-Putnam (on clauses) 
– 3. Davis-Putnam (on original statements) 
– 4. Davis-Putnam and Truth-Tree combo 

Q ∨ ¬S 
(P ∧ Q) ↔ R 
¬S → R 
---- 
¬P → (Q ↔ S) 



Projects 

• Compare and contrast efficiency of different 
methods  
– How is efficiency effected by  

• Using Clause elimination strategies 
• Using Unit rule 
• Not putting into CNF 
• Etc. 

– What about combinations of different methods? 
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