# Resolution and Davis-Putnam 

Computability and Logic

## Logic Recap: <br> Expressive Completeness

## Rewriting Statements

- We can rephrase (rewrite) any occurrence of $\mathrm{P} \leftrightarrow \mathrm{Q}$ as $(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{Q} \rightarrow \mathrm{P})$.
- And, $\mathrm{P} \rightarrow \mathrm{Q}$ itself can rewritten as $\neg \mathrm{P} \vee \mathrm{Q}$
- Therefore, any traditional propositional logic expression (i.e. those using $\neg, \wedge, \vee$, $\rightarrow, \leftrightarrow)$ can be rewritten into one that only uses the Boolean connectives $(\neg, \wedge, \vee)$.


## Negation Normal Form

- Literals: Atomic Sentences or negations thereof.
- Negation Normal Form: An expression built up with ' $\wedge$ ', ' $\vee$ ', and literals.
- Using repeated DeMorgan and Double Negation, we can transform any expression built up with ' $\wedge$ ', ' $\vee$ ', and ' $\neg$ ' into an expression that is in Negation Normal Form.
- Example: $\neg((\mathrm{A} \vee \mathrm{B}) \wedge \neg \mathrm{C}) \Leftrightarrow$ (DeMorgan)

$$
\begin{aligned}
& \neg(\mathrm{A} \vee \mathrm{~B}) \vee \neg \neg \mathrm{C} \Leftrightarrow \quad(\text { Double Neg, DeM) } \\
& (\neg \mathrm{A} \wedge \neg \mathrm{~B}) \vee \mathrm{C}
\end{aligned}
$$

## Disjunctive Normal Form

- Disjunctive Normal Form: A generalized disjunction of generalized conjunctions of literals.
- Using repeated distribution of $\wedge$ over $\vee$, any statement in Negation Normal Form can be written in Disjunctive Normal Form.
- Example:

$$
\begin{aligned}
& (A \vee B) \wedge(C \vee D) \Leftrightarrow(\text { Distribution }) \\
& {[(A \vee B) \wedge C] \vee[(A \vee B) \wedge D] \Leftrightarrow(\text { Distribution }(2 x))} \\
& (A \wedge C) \vee(B \wedge C) \vee(A \wedge D) \vee(B \wedge D)
\end{aligned}
$$

## DNF and SOP

- In computer circuitry design, the term Sum Of Products (SOP) is often used, since if you consider T as ' 1 ', and F as ' 0 ', then $\wedge$ is like multiplication, and $\vee$ is like addition (where anything $>0$ is considered 1 )
- Thus, in computer circuitry design, $(A \wedge C) \vee(B \wedge C) \vee(A \wedge D) \vee$ $(\mathrm{B} \wedge \mathrm{D})$ is often written as: $\mathrm{AC}+\mathrm{BC}+\mathrm{AD}+\mathrm{BD}$ ('Sum of Products’)

| A | B | AB |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 0 |


| $A$ | $B$ | $A+B$ |
| :---: | :---: | :---: |
| 1 | 1 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
| 0 | 0 | 0 |

# Conjunctive Normal Form (or: Product of Sums: POS) 

- Conjunctive Normal Form: A generalized conjunction of generalized disjunctions of literals.
- Using repeated distribution of $\vee$ over $\wedge$, any statement in Negation Normal Form can be written in Conjunctive Normal Form.
- Example:

$$
\begin{aligned}
& (A \wedge B) \vee(C \wedge D) \Leftrightarrow(\text { Distribution }) \\
& {[(A \wedge B) \vee C] \wedge[(A \wedge B) \vee D] \Leftrightarrow(\text { Distribution }(2 x))} \\
& (A \vee C) \wedge(B \vee C) \wedge(A \vee D) \wedge(B \vee D)
\end{aligned}
$$

## Special Cases

- Any literal (such as A or $\neg \mathrm{B}$ ) is in NNF, DNF (it is a disjunction whose only disjunct is a conjunction whose only conjunct is that literal), and CNF
- A conjunction of literals (e.g. $\neg \mathrm{A} \wedge \neg \mathrm{B} \wedge \mathrm{C}$ ) is in NNF, DNF (a disjunction whose only disjunct is that conjunction), and CNF
- A disjunction of literals is in NNF, DNF, and CNF


## Summing Up

- Any traditional propositional logic expression can be transformed into a Boolean Logic expression
- Any Boolean logic expression can be put into NNF
- Any NNF expression can be put into CNF
- Any NNF expression can be put into CNF
- So, any traditional propositional logic expression can be put into NNF, CNF, and DNF


## Expressing any truth-function using 'and', 'or', and 'not'

- Even better: no matter what additional truthfunctional operators you define (e.g. XOR, ID, "If ...Then ... Else", etc.), you can always re-express them in terms of the Boolean connectives $\wedge, \vee$, and $\neg$ !
- Indeed, any truth-function, no matter how complex, or defined over how many atomic statements, can be expressed in terms of the Boolean connectives $\wedge, \vee$, and $\neg$ !
- 'Proof': generalize from example on next slide.


## Expressive Completeness

| P | Q | $\mathrm{P} * \mathrm{Q}$ | Step 1: <br> Create term for |
| :---: | :---: | :---: | :--- |
| T | T | F | every ‘ T ': |
| T | F | T | $\Rightarrow \mathrm{P} \wedge \neg \mathrm{Q}$ |
| F | T | T | $\Rightarrow \neg \mathrm{P} \wedge \mathrm{Q}$ |
| F | F | F |  |

Step 2:
Disjunct all terms

$$
\Rightarrow(\mathrm{P} \wedge \neg \mathrm{Q}) \vee(\neg \mathrm{P} \wedge \mathrm{Q})
$$

(note: expression is in DNF)

Note that this works for any truth-function defined over any number of atomic statements.
We thus say that $\{\wedge, \vee, \neg\}$ is expressively complete!!

## CNF and Truth-Tables

- We can also generate a CNF that captures any truthfunction from its truth-table:

|  |  |  | Step 1: <br> P |
| :---: | :---: | :---: | :--- |
| Q | $\mathrm{P} * \mathrm{Q}$ | Create term fo <br> every ' F ': |  |
| T | T | F | $\Rightarrow \mathrm{P} \wedge \mathrm{Q}$ |
| T | F | T |  |
| F | T | T |  |
| F | F | F | $\Rightarrow \neg \mathrm{P} \wedge \neg \mathrm{Q}$ |

Step 2:
Disjunct all terms
$\Rightarrow(\mathrm{P} \wedge \mathrm{Q}) \vee(\neg \mathrm{P} \wedge \neg \mathrm{Q})$

Step 3:
Negate!
$\Rightarrow \neg((\mathrm{P} \wedge \mathrm{Q}) \vee(\neg \mathrm{P} \wedge \neg \mathrm{Q}))$, i.e.
$\Rightarrow \neg(\mathrm{P} \wedge \mathrm{Q}) \wedge \neg(\neg \mathrm{P} \wedge \neg \mathrm{Q})$, i.e.
$\Rightarrow(\neg \mathrm{P} \vee \neg \mathrm{Q}) \wedge(\mathrm{P} \vee \mathrm{Q})(\mathrm{CNF}!)$

## CNF and Truth-Tables II

- More directly:

| P Q | P*Q | Step 1: <br> Create negated 'term' for every ' $F$ ': |  |
| :---: | :---: | :---: | :---: |
| T T |  | $\Rightarrow \neg \mathrm{P} \vee \neg \mathrm{Q}$ | Step 2: |
| T F | T |  | Conjunct terms |
|  | T |  | $\Rightarrow(\neg \mathrm{P} \vee \neg \mathrm{Q}) \wedge(\mathrm{P} \vee \mathrm{Q})$ |
| F F |  | $\Rightarrow \mathrm{P} \vee \mathrm{Q}$ |  |

Resolution

## Resolution

- Resolution is, like the tree method, a method to check for the logical consistency of a set of statements.
- Resolution requires all sentences to be put into CNF.
- A set of sentences in CNF is made into a clause set S : a set of clauses, where a clause C is a set of literals.
- Each clause C represents a disjunction of literals
- The clause set S represents a conjunction of disjunctions of literals


## Resolution Rule

- Clauses are resolved using the resolution rule, and the resulting clause (the resolvent) is added to the clause set:

$$
\begin{gathered}
\mathrm{L} \in \mathrm{C}_{1} \\
\frac{\mathrm{~L}^{\prime} \in \mathrm{C}_{2}}{\mathrm{C}_{\mathrm{NEW}}}=\mathrm{C}_{1} / \mathrm{L} \cup \mathrm{C}_{2} / \mathrm{L}
\end{gathered}
$$

## Putting into CNF

$$
\begin{aligned}
& \neg(\mathrm{P} \leftrightarrow \mathrm{Q}) \quad \Leftrightarrow(\text { Equiv }) \\
& \neg((\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{Q} \rightarrow \mathrm{P})) \quad \Leftrightarrow(\text { Impl }) \\
& \neg((\neg \mathrm{P} \vee \mathrm{Q}) \wedge(\neg \mathrm{Q} \vee \mathrm{P})) \quad \Leftrightarrow(\mathrm{DeM}) \\
& \neg(\neg \mathrm{P} \vee \mathrm{Q}) \vee \neg(\neg \mathrm{Q} \vee \mathrm{P}) \quad \Leftrightarrow(\text { DeM }, \mathrm{DN}) \\
& (\mathrm{P} \wedge \neg \mathrm{Q}) \vee(\mathrm{Q} \wedge \neg \mathrm{P}) \quad \Leftrightarrow(\text { Dist }) \\
& ((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{Q}) \wedge((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \neg \mathrm{P}) \quad \Leftrightarrow(\text { Dist }) \\
& (\mathrm{P} \vee \mathrm{Q}) \wedge(\neg \mathrm{Q} \vee \mathrm{Q}) \wedge(\mathrm{P} \vee \neg \mathrm{P}) \wedge(\neg \mathrm{Q} \vee \neg \mathrm{P})
\end{aligned}
$$

## Resolution Graph



## Satisfiability

- A clause is satisfied by a truth-value assignment if and only if that assignment makes at least one literal in that clause true.
- A clause set is satisfiable if and only if there is a truthvalue assignment that satisfies all clauses in that clause set.
- Figuring out whether some clause set is satisfiable is the satisfiability problem. This problem is a central problem in computer science, as many problems in computer science can be reduced to a satisfiability problem.
- In our case: a set of sentences is consistent if and only if the corresponding clause set is satisfiable.


## Soundness and Completeness of Resolution

- The rule of Resolution is sound, making the method of resolution sound as well (so, if the empty clause (which is a generalized disjunction of 0 disjuncts, which is a contradiction) can be resolved from a clause set, then that means that that clause set is indeed unsatisfiable.
- It can be shown that resolution is complete, i.e. that the empty clause can be resolved from any unsatisfiable clause set.


## Resolutions as Derivations

$$
\begin{aligned}
& \text { 1. }\{\mathrm{A}, \mathrm{~B}\} \\
& \text { 2. }\{\mathrm{A}, \mathrm{C}\} \\
& (\mathrm{A} \vee \mathrm{~B}) \underset{\Downarrow}{\rightarrow(\mathrm{D} \vee \mathrm{E})} \quad(\neg \mathrm{A} \vee \mathrm{D} \vee \mathrm{E}) \wedge(\neg \mathrm{B} \vee \mathrm{D} \vee \mathrm{E}) \Rightarrow \begin{array}{l}
\text { 3. }\{\neg \mathrm{A}, \mathrm{D}, \mathrm{E}\} \\
\text { 4. }\{\neg \mathrm{B}, \mathrm{D}, \mathrm{E}\}
\end{array} \\
& \neg(\mathrm{A} \vee \mathrm{~B}) \vee(\mathrm{D} \vee \mathrm{E}) \Rightarrow(\neg \mathrm{A} \wedge \neg \mathrm{~B}) \vee(\mathrm{D} \vee \mathrm{E}) \quad \neg \mathrm{E} \Rightarrow \quad 5 .\{\neg \mathrm{E}\} \\
& \neg \mathrm{A} \Rightarrow \quad 6 .\{\neg \mathrm{A}\} \\
& \neg(\mathrm{C} \wedge \mathrm{D}) \Rightarrow \neg \mathrm{C} \vee \neg \mathrm{D} \Rightarrow \text { 7. }\{\neg \mathrm{C}, \neg \mathrm{D}\} \\
& 17.42 \text { from LPL: } \\
& A \vee(B \wedge C) \\
& \neg \text { E } \\
& (\mathrm{A} \vee \mathrm{~B}) \rightarrow(\mathrm{D} \vee \mathrm{E}) \\
& \neg \mathrm{A} \\
& \therefore \mathrm{C} \wedge \mathrm{D} \\
& \text { 13. }\} \quad 11,12
\end{aligned}
$$

## Resolutions as Decision Procedures

- Resolution can be made into a decision procedure by systematically exhausting all possible resolvents (of which there are finitely many).
- This will not be very efficient unless we add some resolution strategies.


## Resolution Strategies

- Clause Elimination Strategies
- Tautology Elimination
- Subsumption Elimination
- Pure Literal Elimination
- Resolving Strategies
- Unit Preference Resolution
- Linear Resolution
- Ordered Resolution
- Etc.


## Tautology Elimination

- A tautologous clause is a clause that contains an atomic statement as well as the negation of that atomic statement. E.g. $\{\mathrm{A}, \mathrm{B}, \neg \mathrm{A}\}$ is tautologous.
- Obviously, for any tautologous clause C, any truth-value assignment is going to satisfy C.
- Hence, with S any clause set, and with S’ the clause set $S$ with all tautologous clauses removed: $S$ is satisfiable if and only if $S^{\prime}$ is satisfiable.


## Subsumption Elimination

- A clause $\mathrm{C}_{1}$ subsumes a clause $\mathrm{C}_{2}$ if and only if every literal contained in $\mathrm{C}_{1}$ is contained in $\mathrm{C}_{2}$, i.e. $\mathrm{C}_{1} \subseteq \mathrm{C}_{2}$. E.g. $\{\mathrm{A}, \mathrm{B}\}$ subsumes $\{\mathrm{A}, \mathrm{B}, \neg \mathrm{C}\}$
- Obviously, if $\mathrm{C}_{1}$ subsumes $\mathrm{C}_{2}$, then any truthvalue assignment that satisfies $C_{1}$ will satisfy $C_{2}$.
- Hence, with S any clause set, and S’ the clause set $S$ with all subsumed clauses removed: $S$ is satisfiable if and only if $S^{\prime}$ is satisfiable.


## Pure Literal Elimination

- A literal L is pure with regard to a clause set S if and only if $L$ is contained in at least one clause in $S$, but $L^{\prime}$ is not.
- A clause is pure with regard to a clause set S if and only if it contains a pure literal.
- Obviously, with S any clause set, and with S' the clause set S with all pure clauses removed: S is satisfiable if and only if $S^{\prime}$ is satisfiable.


## Unit Preference Resolution

- A unit clause is a clause that contains one literal.
- Unit preference resolution tries to resolve using unit clauses first.


## Unit Literal Deletion and

## Splitting

- For any clause set $\mathrm{S}, \mathrm{S}_{\mathrm{L}}$ is the clause set that is generated from $S$ as follows:
- Remove all clauses from S that contain L.
- Remove all instances of L' from all other clauses
- Obviously, with $C=\{L\} \in S$, $S$ is satisfiable if and only if $\mathrm{S}_{\mathrm{L}}$ is satisfiable.
- It is also easy to see that for any clause set $S$, and any literal L : S is satisfiable if and only if $\mathrm{S}_{\mathrm{L}}$ is satisfiable or $S_{L}$, is satisfiable.
- The last observation suggests a splitting strategy that forms the basis of Davis-Putnam.


## Davis-Putnam

## Davis-Putnam

- Recursive routine Satisfiable(S) returns true iff $S$ is satisfiable:
boolean Satisfiable(S)
begin
if $S=\{ \}$ return true;
if $S=\{\{ \}\}$ return false;
select $\mathrm{L} \in \operatorname{lit}(\mathrm{S})$;
return Satisfiable $\left(\mathrm{S}_{\mathrm{L}}\right) \|$ Satisfiable $\left(\mathrm{S}_{\mathrm{L}}\right)$;
end


## Davis-Putnam as Trees



Step 2: Put into CNF Step 3: Make into clauses



## Simple Example Invalid Argument

$$
\begin{array}{lll}
\mathrm{A} \rightarrow \mathrm{~B} & \rightarrow \neg \mathrm{~A} \vee \mathrm{~B} & \rightarrow\{\neg \mathrm{~A}, \mathrm{~B}\} \\
\neg \mathrm{A} & \rightarrow \neg \mathrm{~A} & \rightarrow\{\neg \mathrm{~A}\} \\
\neg \neg \mathrm{B} \rightarrow \neg \neg \mathrm{~B} & \rightarrow \mathrm{~B} & \rightarrow\{\mathrm{~B}\}
\end{array}
$$



Reached empty clause set:
So set of statements in root are consistent So original argument is invalid Model is given by branches: A False and B True

## Making Davis-Putnam Efficient:

## Adding Bells and Whistles

- The routine on the previous slide is not very efficient. However, we can easily make it more efficient:
- return false as soon as $\} \in S$
- add the unit rule: if $\{\mathrm{L}\} \in \mathrm{S}$ return Satisfiable $\left(\mathrm{S}_{\mathrm{L}}\right)$
- strategically add clause deletion strategies (e.g. subsumption, pure literal)
- strategically choose the literal on which to split
- As far as I have gathered from the ATP literature, such efficient Davis-Putnam routines are credited to do well in comparison to other ATP routines.

Step 2: Put into CNF Step 3: Make into clauses



Step 2: Put into CNF Step 3: Make into clauses


Step 5: Do DP!

Conclusion
(A) $\{\neg \mathrm{Q}\}$

$$
\begin{aligned}
& \text { \{N, Q\} } \\
& \{\neg \mathrm{N}\} \\
& \underbrace{\{\neg \mathrm{Q}\}}_{\{\mathrm{Q}\}} \\
& \text { (Q) }\left\{\begin{array}{c} 
\\
\{Q\}
\end{array}\right. \\
& \begin{array}{c}
\} \\
\times
\end{array}
\end{aligned}
$$

Same example as before, but using unit rule

## Davis-Putnam and Truth-Trees

- Observation: Davis-Putnam looks a bit like TruthTree method. In fact, on the next slides, we'll see:
- Like TT, 'check marks’ can be used in representation of DP
- Like TT, whole statements can be used (i.e. no need for clauses)
- How does Davis-Putnam differ from Truth-Trees?
- Davis-Putnam is an ‘inside-out’ approach: it assigns a truth-value to atomic statements and determines the consequences of that assignment for the more complex statements composed of those atomic statements.
- Truth-Trees is an ‘outside-in' approach: it assigns truthvalues to complex statements and determines the consequences of that assignment for the smaller statements it is composed of.

Step 2: Put into CNF Step 3: Make into clauses

$$
\begin{aligned}
& \text { Step 1. Negate } \\
& \text { Conclusion } \\
& \frac{(\mathrm{A})}{\{\neg \mathrm{Q}\} \underset{5}{\left\{V_{5}\right.}(\neg \mathrm{A})} \text { Step 5: Do DP! } \\
& \text { (N) }\{\mathrm{N}, \mathrm{Q}\} V_{4} \\
& \text { \{\} } \\
& \times \\
& \text { Same example as before, } \\
& \text { but using check mark system }
\end{aligned}
$$

Step 2: Put into CNF Step 3: Make into clauses


Step 2: Put into CNF Step 3: Make into clauses

$$
\begin{aligned}
& \text { Step 5: Do DP! } \\
& \text { Step 1. Negate } \\
& \text { Conclusion }
\end{aligned}
$$

## Can we do DP without CNF?

- Sure, simply consider a set of statements, and see what happens to each of the statements when some atomic claim is set to true or false, respectively.
- For example, when we set A to True:
- $(\mathrm{A} \vee \mathrm{B}) \rightarrow(\mathrm{D} \vee \mathrm{E})$ becomes
$-($ True $\vee B) \rightarrow(D \vee E)$ becomes
- True $\rightarrow(\mathrm{D} \vee \mathrm{E})$ becomes
- D $\vee \mathrm{E}$


## Rules for DP without CNF

$\begin{array}{llll}\neg \text { True } & \text { True } \wedge P & \text { True } \vee P & \text { True } \rightarrow P\end{array} \quad \begin{aligned} & \text { True } \leftrightarrow P\end{aligned}$
$\neg$ False $\quad$ False $\wedge P \quad$ False $\vee P \quad$ False $\rightarrow P \quad$ False $\leftrightarrow P$
$\Rightarrow$ True $\quad \Rightarrow$ False $\quad \Rightarrow P \quad \Rightarrow$ True $\quad \Rightarrow \neg P$

| $\mathrm{P} \wedge$ True | $\mathrm{P} \vee$ True | $\mathrm{P} \rightarrow$ True | $\mathrm{P} \leftrightarrow$ True |
| :--- | :--- | :--- | :--- |
| $\Rightarrow \mathrm{P}$ | $\Rightarrow$ True | $\Rightarrow$ True | $\Rightarrow \mathrm{P}$ |
| $\mathrm{P} \wedge$ False | $\mathrm{P} \vee$ False | $\mathrm{P} \rightarrow$ False | $\mathrm{P} \leftrightarrow$ False |
| $\Rightarrow$ False | $\Rightarrow \mathrm{P}$ | $\Rightarrow \neg \mathrm{P}$ | $\Rightarrow \neg \mathrm{P}$ |

Step 2: Put statements at root of tree

| $\mathrm{A} \rightarrow(\mathrm{N} \vee \mathrm{Q})$ <br> $\frac{\neg(\mathrm{N} \vee \neg \mathrm{A})}{\mathrm{A} \rightarrow \mathrm{Q}}$ <br> $\downarrow \neg(\mathrm{A} \rightarrow \mathrm{Q})$ |
| :---: |

Step 1. Negate
Conclusion

$$
\begin{aligned}
& \mathrm{A} \rightarrow(\mathrm{~N} \vee \mathrm{Q}) \\
& \neg(\mathrm{N} \vee \neg \mathrm{~A}) \\
& \neg(\mathrm{A} \rightarrow \mathrm{Q})
\end{aligned}
$$

Step 3: Do DP!
(True)
False
(True)
$\stackrel{\neg \mathrm{Q}}{\times}$
(True)
False
$x$


False
(True)

Step 2: Put statements at root of tree

| $\mathrm{A} \rightarrow(\mathrm{N} \vee \mathrm{Q})$ <br> $\frac{\neg(\mathrm{N} \vee \neg \mathrm{A})}{\mathrm{A} \rightarrow \mathrm{Q}}$ |
| :--- |
| $\downarrow \neg(\mathrm{A} \rightarrow \mathrm{Q})$ |$\rightarrow$

Step 1. Negate Conclusion


Step 2: Put statements at root of tree


False
$\times$

Same example, but using check mark system

False $\times$

False
$\times$

$$
\begin{aligned}
& 17.42 \text { from LPL: } \\
& A \vee(B \wedge C) \\
& \neg \text { E } \\
& (\mathrm{A} \vee \mathrm{~B}) \rightarrow(\mathrm{D} \vee \mathrm{E}) \\
& \neg \mathrm{A} \\
& \therefore \mathrm{C} \wedge \mathrm{D} \\
& \begin{array}{l}
A \vee(B \wedge C) \\
\neg E \\
(A \vee B) \rightarrow(D \vee E)
\end{array} \\
& \neg \mathrm{A} \\
& \neg(C \wedge D) \\
& \neg \text { E } \\
& \mathrm{D} \vee \mathrm{E} \\
& \text { False } \\
& \neg(C \wedge D) \\
& \times
\end{aligned}
$$



## Can DP and TT be combined?

- OK, Davis-Putnam now really starts to look like the truth tree method...
- Can these two methods be combined into one method?
- Sure!
- Project: Investigate efficiency of this method


## Example: DP and TT Combo

$\neg \mathrm{A} \rightarrow \mathrm{B} \quad V_{4}$
$\mathrm{C} \rightarrow(\mathrm{D} \vee \mathrm{E})$
$\mathrm{D} \rightarrow \neg \mathrm{V}$
$\mathrm{A} \rightarrow \neg \mathrm{E}$
$\neg(\mathrm{C} \rightarrow \mathrm{B})$
C
$\neg \mathrm{B}$

$$
\begin{aligned}
& 17.43 \text { from LPL: } \\
& \neg A \rightarrow B \\
& C \rightarrow(D \vee E) \\
& D \rightarrow \neg C \\
& A \rightarrow \neg E \\
& \therefore C \rightarrow B
\end{aligned}
$$

$\mathrm{D} \vee \mathrm{E} \quad V_{6}$
$\neg \mathrm{D}$
$\neg \neg \mathrm{A}$
A
V
E
$\neg \mathrm{E}$
$\mathrm{x}_{7}$

1. TT rule: decompose $\neg(\mathrm{C} \rightarrow \mathrm{B})$
2. Unit rule: reduce with regard to C
3. Unit rule: reduce with regard to C
4. Unit rule: reduce with regard to $\neg \mathrm{B}$
5. TT rule: decompose $\neg \neg \mathrm{A}$
6. Unit rule: reduce with regard to $\neg \mathrm{B}$
7. Close between $E$ and $\neg E$

## Exercise

- Show the argument below to be valid using:
- 1. Resolution
- 2. Davis-Putnam (on clauses)
- 3. Davis-Putnam (on original statements)
- 4. Davis-Putnam and Truth-Tree combo

$$
\begin{aligned}
& \mathrm{Q} \vee \neg \mathrm{~S} \\
& (\mathrm{P} \wedge \mathrm{Q}) \leftrightarrow \mathrm{R} \\
& \neg \mathrm{~S} \rightarrow \mathrm{R} \\
& --- \\
& \neg \mathrm{P} \rightarrow(\mathrm{Q} \leftrightarrow \mathrm{~S})
\end{aligned}
$$

## Projects

- Compare and contrast efficiency of different methods
- How is efficiency effected by
- Using Clause elimination strategies
- Using Unit rule
- Not putting into CNF
- Etc.
- What about combinations of different methods?

