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Objective: To use the detection of clinically relevant inconsistencies to support the reasoning capabilities
of intelligent agents acting as physicians and tutors in the realm of clinical medicine.
Methods: We are developing a cognitive architecture, OntoAgent, that supports the creation and deploy-
ment of intelligent agents capable of simulating human-like abilities. The agents, which have a simulated
mind and, if applicable, a simulated body, are intended to operate as members of multi-agent teams fea-
turing both artificial and human agents. The agent architecture and its underlying knowledge resources
and processors are being developed in a sufficiently generic way to support a variety of applications.
Results: We show how several types of inconsistency can be detected and leveraged by intelligent agents
in the setting of clinical medicine. The types of inconsistencies discussed include: test results not sup-
porting the doctor’s hypothesis; the results of a treatment trial not supporting a clinical diagnosis; and
information reported by the patient not being consistent with observations. We show the opportunities
afforded by detecting each inconsistency, such as rethinking a hypothesis, reevaluating evidence, and

motivating or teaching a patient.
Conclusions: Inconsistency is not always the absence of the goal of consistency; rather, it can be a valuable
trigger for further exploration in the realm of clinical medicine. The OntoAgent cognitive architecture,
along with its extensive suite of knowledge resources an processors, is sufficient to support sophisticated
agent functioning such as detecting clinically relevant inconsistencies and using them to benefit patient-
centered medical training and practice.
. Introduction

The term inconsistency tends to imply a negative evaluation of a
tate of affairs, the lack of a state of consistency that is the implied
oal. However, in societies of people, and in societies of intelligent
gents modeled as people, inconsistency is not always a detri-
ent, it can actually serve as a diagnostic tool. For example, in the

omain of clinical medicine, inconsistencies between test results
nd the doctor’s hypothesis about what is wrong can suggest that
he hypothesis was incorrect or that the test results were flawed,
nd inconsistencies between a doctor’s observation and a patient’s
eport can suggest an intentional or unintentional misrepresen-
ation by the patient. Similarly, in the domain of teaching clinical

edicine, inconsistencies between an expert’s preferred approach
o solving a problem and a novice’s approach can suggest room for

mprovement for the novice. Accordingly, if intelligent agents are

odeled to function as clinicians or as tutors for clinicians, they
hould be prepared to exploit diagnostic inconsistencies in the same
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way as people do. This paper describes our recent work in con-
figuring intelligent agents who serve in both of these roles and
count among their stockpile of cognitive capabilities the detection
of diagnostic inconsistencies.

1.1. OntoAgent agents

The intelligent agent environment to be used for illustra-
tion is OntoAgent, which supports the modeling of human-like
behavior in artificial intelligent agents that collaborate with peo-
ple (http://www.trulysmartagents.org/index.php). OntoAgent is a
multi-agent environment being developed to support a suite of
applications, including training and advising in the domain of clin-
ical medicine. The development approach, which seeks to model
agents that function like people, necessitates that our program of
R&D be comprehensive, actively covering areas including the fol-
lowing:
• Physiological simulation using hybrid domain knowledge: phys-
iological pathways when they are known and relevant for the
goals of the simulation, and clinical “bridges” when pathways are

dx.doi.org/10.1016/j.artmed.2012.04.005
http://www.sciencedirect.com/science/journal/09333657
http://www.elsevier.com/locate/aiim
mailto:marge@umbc.edu
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ig. 1. The architecture of “double agents” in OntoAgent. The physiological agent is re
ngine, which perceives physiological stimuli generated by the physiological agent

either unknown or unnecessary for the needs of realistic simula-
tion [1,2].
Modeling interoception, which is the cognitive perception of
physical signs and symptoms by intelligent agents [3].
Decision theory, including goal and plan management and hybrid
(rule-based, analogy-based and probabilistic) reasoning [3].
Deep language processing that includes semantic and pragmatic
analysis and language generation [4,5].
Dialog modeling [6].
Memory modeling and management [7–9].
Agent individualization according to character traits (courage,
suggestibility, boredom threshold etc.), personal preferences
(likes coffee, is afraid of surgery, etc.), differing knowledge of the
world, etc. [10].
Agent learning of facts, concepts and language by being told, by
reading and by experience [11].
Use of a shared metalanguage of description and knowledge bases
for agent reasoning, learning and language processing [12,13].
Semi-automatic knowledge elicitation for knowledge-based sys-
tems [14].
Integrating complex multipurposes knowledge systems.
Ergonomic issues for developers and subject matter experts, such
as the development and maintenance of a uniform knowledge
representation substrate for core knowledge bases and proces-
sors and the development of a variety of efficiency-enhancing
toolkits ([4] and http://www.trulysmartagents.org/dekade.php).
Validation of our work by demonstrating feasible, proof-of-
concept applications [1,2,10,11,15].

Here, we provide brief background about select aspects of
ntoAgent that should suffice to support understanding of the new

ork being reported.

Intelligent agents in OntoAgent are “double agents”, in that they
ave a cognitive side and, optionally, a physiological side. The archi-
ecture of agents is shown in Fig. 1.
nted by the upper right pentagon. The rest of the figure – including the interoception
e realm of the cognitive agent.

To model the physiological agent – which “lives” a simulated
life over time in applications – we encode knowledge about bio-
physical functions that have clinical relevance in the maintenance
of health, the production of disease, and the bidirectional transi-
tions between these two states. When biomechanisms are known
and are deemed clinically important, they are modeled using causal
chains. Gaps in our knowledge of biomechanisms are bridged with
non-biomechanistic knowledge from the literature, practical clini-
cal knowledge and, in some cases, probabilistic methods. The depth
and granularity of the models are determined by the demands
of automatic function and realism in our current and anticipated
applications. As a rule of thumb, a feature value or process is
included in the model if it can either be measured through tests,
be affected by medication/interventions, or cause a change in some
other clinically relevant feature value or process. Of central impor-
tance is the fact that our models can be easily modified, reflecting
new medical findings or the assessment that a clinical “bridge”
(i.e., a non-mechanistic observation of how a disease process man-
ifests based on population-level clinical observation) needs to be
replaced by a biomechanism in order to support the functionality
required by an application.

The cognitive agent engages in the well-known triad of func-
tionalities: perception, reasoning and action. It is ideologically
close to, though methodologically not identical with, the belief-
desire-intention (BDI) model of agency [16]. Unlike the classical BDI
implementations [17], our approach centrally involves language
comprehension and production as well as physiological simulation.

As shown in Fig. 1, agents undergo two types of perception: inte-
roception and language understanding. The results of both modes
of perception are interpreted and stored in the agent’s knowledge
resources: ontology, fact repository (memory of assertions), and
language resources, such as lexicon and grammar (the latter can

be learned, e.g., when the agent encounters new words through
interaction with another agent). Each agent has its own knowledge
resources, which can differ from those of other agents to repre-
sent different levels of education, different personal experience,

http://www.trulysmartagents.org/dekade.php
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ig. 2. The network of agents in the Maryland Virtual Patient (MVP) application.

tc. Agents also learn about aspects of other agents’ knowledge and
tore these in their fact repository “profiles” of those agents.

Interoception is the agent’s perception of its bodily signals, which
re generated by the physiological agent. The interoception sub-
odule operates a set of demons that are programmed (a) to

otice the changes in values of specific physiological parameters
nd (b) if these values move outside a certain range, to instantiate
orresponding symptoms in the VP’s memory. Symptoms are rep-
esented as values of properties in the VP’s profile of self, which
s an instance of the ontological concept human stored in its fact
epository.

The second type of agent perception is language understanding,
hich will be described in some detail in Section 2.

Agent reasoning is carried out at dozens of levels, from the many
rocesses involved in deep natural language understanding to the
rocesses involved in memory management to the manipulation
f plans and goals. Fig. 1 highlights the goal- and plan-oriented
spects of agent reasoning, which is operationalized using knowl-
dge structures like the ones to be described in Section 4.

Once we have a parameterizable double agent, what can we do
ith it? There are many options. We can take one instance of a

ody combined with one instance of a mind and create a virtual
atient that can serve as a training case for physicians; and we
an repeat that process thousands of times to create differentiated
ases. Or we can take a mind (no body needed) with sophisti-
ated medical knowledge and create a clinician’s advisor. Or we
an take a mind similar to the latter, supplement it with pedagog-
cal knowledge, and create an interactive tutor. In short, not only
oes this “theme and variations” style of modeling permit wide
ariety among agents, it maximally reuses knowledge structures
nd modeling strategies across agents.

.2. Societies of agents

Intelligent agents in OntoAgent function in societies of humans
nd other intelligent agents. A sample configuration is shown in
ig. 2, which is a high-level view of the prototype Maryland Virtual
atient (MVP) application.

MVP is a cognitive simulation and training system whose goal
s to provide medical practitioners with the opportunity to develop
linical decision-making skills by managing many highly differ-
ntiated virtual patients (VPs) [1,2,10]. The human agent, who is
ypically a physician-in-training seeking to improve his cognitive
ecision making skills, plays the role of the attending physician.

he two core artificial agents are the VP and the tutor, which share
n inventory of cognitive skills including, non-exhaustively, the
bility to reason in a context-sensitive way, to communicate in
atural language, to learn, to manage memory, and to maintain
in Medicine 55 (2012) 137–148 139

a dynamic model of other agents. The VP and the tutor also have
certain specialized capabilities. The tutor has specialized ontologi-
cal knowledge and decision functions devoted to tutoring but has
no need for a simulated body or personality. The VP, for its part,
does have a simulated body and a personality. Physiologically, it
undergoes both normal and pathological processes and responds
realistically both to expected and to unexpected (e.g., caused by
errors in a user’s medical logic) internal and external stimuli. Its
personality affects its decision making in the realms of lifestyle and
health care.

Users of MVP can interview a VP using natural language;
order lab tests; receive the results of lab tests from technician
agents; receive interpretations of lab tests from consulting physi-
cian agents; posit hypotheses, clinical diagnoses and definitive
diagnoses; prescribe treatments such as medication and surgery;
follow-up after those treatments to judge their efficacy; follow
a patient’s condition over an extended period of time; receive
mentoring from the automatic tutor, if desired; and repeat the
management of a given VP using different management strategies
to compare their outcomes. The user can launch any intervention
available in the system at any time during the simulation, be it
clinically justified or not. In the latter case, if the user inadvertently
worsens the VP’s condition or initiates a new disease process, he
must recover from the error in the continuing simulation by treat-
ing the new condition he has inadvertently caused. A prototype
MVP system has been implemented, covering several diseases of
the esophagus, and the system continues to be developed.

2. Technical background about the OntoAgent environment

This section provides background about the OntoAgent envi-
ronment that will be useful for readers who want to fundamentally
understand how the reported work is being implemented and why
it is feasible. Readers preferring to focus more narrowly on the
utility of diagnostic inconsistency may wish to skip this section
and return later, if needed, should a deeper understanding of the
illustrative knowledge structures be desired.

All OntoAgent applications use a primarily knowledge-based
approach to agent modeling. All physiological, general cognitive
and language processing capabilities of all intelligent agents rely
on the same ontological substrate, the same organization of the fact
repository (agent memory of assertions) and the same approach to
knowledge representation. Since knowledge structures will be pre-
sented as an explanation of how we prepare our agents to function
effectively in the face of inconsistency, a short overview of each
knowledge base is warranted.

The OntoAgent ontology is a formal model of the world that
provides a metalanguage for describing meaning derived from
any source, be it language, intelligent agent perception, intelli-
gent agent reasoning or simulation [4,12,13]. The metalanguage of
description is unambiguous, permitting automatic reasoning about
language and the world to be carried out without the interference of
lexical and morphosyntactic ambiguities. The ontology is organized
as a multiple-inheritance hierarchical collection of frames headed
by concepts that are named using language-independent labels. It
currently contains approximately 9000 concepts, most of which
belong to the general domain. Concepts divide up into events,
objects and properties (relations and attributes). The objects and
events are described using the properties, while the properties
themselves are primitives – i.e., their meaning is understood to be
grounded in the real world without the need for further ontological

decomposition.

The expressive power of the ontology is enhanced by multival-
ued fillers for properties, implemented using facets. Facets permit
the ontology to include information such as “the most typical
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Fig. 3. Excerpt from the ontological frame for the concept take-medicine

olors of a car are white, black, silver and gray; other normal, but
ess common, colors are red, blue, brown and yellow; rare col-
rs are gold and purple.” The inventory of facets includes: default,
hich represents the most restricted, highly typical subset of fillers;

em, which represents typical selectional restrictions; relaxable-to,
hich represents what is possible but is not typical; and value,
hich represents not a constraint but an actual, non-overridable

alue. Objects and events are defined for an average of 16 prop-
rties each, many of whose fillers are inherited rather than locally
pecified. Unlike most ontologies, the OntoAgent ontology includes
omplex events, otherwise known as scripts [18], that support both
imulation and reasoning about language and the world.

To summarize, the meaning of an object or event in the OntoA-
ent ontology can be understood as the meaning of its set of
roperty-facet-value triples.
Excerpts from the frame view and tree view of the ontological
oncept take-medicine, as presented in the DEKADE development
nvironment (http://www.trulysmartagents.org/dekade.php), are
hown in Figs. 3 and 4.

Fig. 4. The concept take-medicine shown in the ontological hierarchy.
ighlighted panel shows that the default constraint on the theme is drug.

Since the ontology is language independent, its link to any natu-
ral language must be mediated by a lexicon. Each lexical sense spec-
ifies which concept, concepts, property or properties of concepts
defined in the ontology must be instantiated in the text-meaning
representation to account for the meaning of a given lexical unit of
input. For example, the English lexicon indicates that the one sense
of dog maps to the concept dog (a type of canine); another sense
maps to human, further specified to indicate a negative evaluative
modality (e.g., a woman can call her cheating ex-boyfriend a dog);
and yet another sense maps to the event pursue.

Lexical senses for argument-taking words and modifiers are
presented along with their typical syntactic configurations. For
example, the lexicon entry for the 7th verbal sense of have is
presented in Fig. 5, which shows the graphical user interface in
which lexicon entries are viewed and edited in the OntoAgent
environment. The syn–struc zone indicates the expected syntactic
configuration, whereas the sem–struc zone indicates the meaning
of the head word, its semantic relationship to the other elements
of the structure, and any necessary constraints on other elements
of the structure. Variables ($var1, $var2, etc.) are used to link the
corresponding elements in the syn–struc and sem–struc zones.

In our example (Fig. 5), the syn–struc says that this is a transitive
sense – i.e., the verb requires both a subject (referred to as $var1)
and a direct object ($var2). The sem–struc indicates that the animal
being realized by $var1 is the experiencer of the event realized by
$var2. The system knows that $var1 must be an animal and $var2
must be an event because the ontological description of the prop-
erty experiencer includes these constraints.1 The sem–struc also
includes the constraint that $var2 must be not just an event, but
specifically a medical-event. If an input meets both the syntactic
and the semantic expectations of this sense, then this sense offers
a candidate interpretation of the input. To summarize, the OntoSem
lexicon supports the combined syntactic and semantic analysis of
texts, and the metalanguage of description in the sem–strucs of lex-
icon entries is identical to that used in the ontology. (For more on
the lexicon and ontology, see [5,19].)

Text processing is carried out by the OntoSem text analysis sys-

tem, whose top-level architecture is shown in Fig. 6. To give a taste
of how intelligent agents in OntoAgent carry out text understand-
ing, let us walk through the processing of a sentence that will be

1 The semantic constraints recorded in the lexicon and ontology are used by the
analyzer in the same way, with the resources being simultaneously leveraged during
text processing.

http://www.trulysmartagents.org/dekade.php
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Fig. 5. The 7th verbal sense of have, used in contexts in which the direct object semantically represents a medical-event.
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Step 3: Compiling expected dependencies from the OntoSem lex-
icon. Next, the OntoSem analyzer compiles a list of
lexically-encoded expected dependencies for each lexical
sense of each argument-taking word in the input. For

Table 1
Select results of preprocessing and morphological analysis.

Word # String PoS Root

0 Are aux be
1 you n you
Fig. 6. The architecture of th

eturned to later as part of a more extended example of inconsis-
ency detection: Are you having any side effects? This description is
n encapsulation of several chapters of [5]. It necessarily assumes
ackground knowledge of NLP and is intended to provide some idea
f how OntoAgent agents understand text, with the understanding
hat many issues must remain unopened in this short space.

tep 1: Preprocessing and morphological analysis. The prepro-
cessor tokenizes the text, then, for each word, the
morphological analyzer determines the part of speech
(PoS), root and morphological features (not listed here), as
shown in Table 1. Phrasal entries, like “side effect”, are rec-
ognized as a complex root word since they are recorded as
such in the OntoSem lexicon.

tep 2: Generating actual dependencies from the input sen-
tence. We use the Stanford parser [20] to generate a

syntactic dependency analysis. We call the output depen-
dencies actual dependencies – i.e., dependencies from
the actual input sentence – to distinguish them from
expected dependencies recorded in the OntoSem lexicon for
oSem text analysis system.

argument-taking words. The actual dependencies for our
sentence are as follows:

aux(having-2, Are-0)
nsubj(having-2, you-1)
det(side effects-4, any-3)
dobj(having-2, side effects-4)
punct(having-2,?-5)
2 having v have
3 any det any
4 side effects n side effect
5 ? punct ?
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example, for each transitive sense of a verb (like have-
v7 above), it will extract from the lexicon the following
expected dependency structure:

subject $var1
v $var0
directobject $var2

tep 4: Converting expected dependencies into Stanford-
compatible format. The analyzer then converts each
expected dependency structure from the OntoSem lexicon
into a Stanford-compatible format, like the following for
our transitive, have-v7 example.

nsubj($var0, $var1)
dobj($var0, $var2)
This format permits more direct comparison between the

actual dependency structure for the input sentence (gener-
ated by the Stanford parser) and the expected dependency
structure for each argument-taking candidate word sense
listed in the OntoSem lexicon.

tep 5: Linking Stanford’s actual dependencies to OntoSem’s
expected dependencies. At this point the analyzer aligns
the actual dependencies from the Stanford parse with the
expected dependencies from the OntoSem lexicon and
scores each alignment. We continue with the example of
have from our input sentence. All senses of have that have
a transitive syn–struc will be treated in the same way and
receive the same Stanford-OntoSem linking score.

Expected dependencies from OntoSem transitive lexical
senses of have, translated into Stanford-compatible format:

nsubj($var0, $var1)
dobj($var0, $var2)

Actual dependencies for have from the Stanford parse:
nsubj(have-2, you-1)
dobj(have-2, side effects-4)

In this case, the alignment is straightforward, with $var1
binding to you-1, and $var2 binding to side effects-4.2 To
summarize, the goal of this step is to generate an exclusively
syntactic score (since the Stanford parser can only weight
in about syntax) for each OntoSem sense of each argument-
taking word in the input sentence. This syntactic score will
later be combined with a semantic score to yield the best
overall analysis of the text.

tep 6: Semantic analysis. All lexical senses that achieve a given
scoring threshold based on their syntactic alignment with
the Stanford dependency parse are then passed on to the
semantic analyzer to be scored based on the semantic con-
straints recorded in the OntoSem lexicon and ontology.

tep 7: Finding the optimal solution. The text analyzer includes
a constraint optimization engine called Hunter-Gatherer
[21], which combines the syntactic and semantic scores of
all candidate word senses and selects the optimal combi-
nation.

tep 8: Generating the text meaning representation. The output of
text analysis is a text meaning representation (TMR) that is
written in the metalanguage of Ontological Semantics [4].
The content of a given TMR is generated by combining the

sem–struc representations of the lexical senses selected to
convey the meaning of each word in the sentence. Each TMR
frame is headed by an instance of an ontological concept.

2 An example of an imperfect Stanford-to-OntoSem linking would be if the input
entence contained [subject, verb, complement], as in She said that he’s running late,
hereas the lexical sense being considered expected [subject, verb, direct object].

he given lexical sense of say would not be a good fit for the input sentence and
ould get a low syntactic score.
in Medicine 55 (2012) 137–148

Below is the TMR for our sample sentence Are you having
any side effects?3

request-info
theme experiencer-1
textstring ?
from-sense ?-punct1

experiencer-1
domain side-effect-1
range human-1
time find-anchor-time ; indicates

present tense
textstring have
from-sense have-v7

side-effect-1
domain-of experiencer-1
reference-action block-coreference

human-1
experiencer-of side-effect-1
textstring you
from-sense you-n1

TMR frames contain both contentful, semantic elements
and metadata. The contentful elements are instances of
ontological concepts, written in small caps and followed by
disambiguating numerical indices. The metadata includes
the textstring slot, filled by the string that spawned the TMR
frame, and the from-sense slot, filled by the lexical sense
used for the interpretation.We have already discussed the
disambiguation decision for have in some detail. Let us
briefly mention the disambiguation of other elements of
this input for the sake of completness.

Question mark. Question marks are treated like
argument-taking words, being supplied with lexical
entries that contain syntactic and semantic expectations
for the question mark’s “dependents”. The question-mark
sense used for this input is described as participating in
a structure with a clause-initial auxiliary – such that the
syntactic dependencies of the auxiliary are taken care of
by this lexical sense as well. The expected dependencies
listed in the OntoSem syn–struc of the entry – converted
into Stanford-compatible format – are as follows.

Expected dependencies recorded in the OntoSem lexicon
for “?” in sentences with a leading aux:

aux($var1,$var2)
punct($var1, $var0)

The actual dependencies generated by the Stanford
parser for our input sentence:

aux(have-2, Are-0)
punct(have-2,?-5)

There is a perfect alignment between the expected and
actual dependencies, with $var1 bound to have-2 and
$var2 bound to Are-0.The sem–struc of this sense of
question-mark indicates that the question mark instanti-
ates a request-info event whose theme is the meaning of
the main verb – in our example, have.

Side effect. There is only one lexical sense for the word
side effect, which maps to the concept side-effect, a descen-

dant of medical-event.

Any. The meaning of any in our context is not rendered
as an ontological concept; instead, this word triggers a

3 For ease of understanding, we represent side effects without the set notation
typically used for plurals. Using set notation, the TMR frame would be headed by an
instance of setwith member-type: side-effect and cardinality: (>1).
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procedural semantic routine that blocks the search for a
coreferential antecedent for side effects. Procedural seman-
tic routines are encoded in the lexicon in a field not shown
in Fig. 5 above. They are run during the stage of microthe-
ory processing in Fig. 6. For more on procedural semantic
routines in OntoSem, see [5,22]; and for more on reference
resolution, see [5,9].

tep 9: Storing information in memory (the fact repository). The
important (as determined by the application) aspects of
text meaning representations are remembered by agents
in their fact repository, which is the memory of assertions.
Among the main differences between raw text meaning
representations and fact repository entries is that the fact
repository reflects the results of reference resolution. For
example, if a given instance of side-effect is referred to
many times, there will be one fact repository “anchor” – say,
side-effect-fr8 – that will be the locus of all of the infor-
mation about that event derived from all of the individual,
coreferential text meaning representation frames.

Language processing wrap-up. This very fast walk through lan-
uage processing in OntoAgent is intended to convey that agents
arry out deep language understanding using a large suite of
tatic knowledge resources and processors. The result of language
rocessing is storing ontologically interpreted knowledge in the
gent’s fact repository (memory). The agent then carries out all
easoning and decision-making on the basis of storied memories.

. Comparisons with others

Before moving from the overview of OntoAgent (Section 2) to
he new work to be reported here (Section 4), let us briefly draw
ome comparisons with other approaches to related problems of
rtificial intelligence.

The work that most closely parallels that of OntoAgent is being
ursued by James Allen and collaborators who, like us, pursue
lassical AI goals – modeling intelligent agents with human-like
apabilities – using extensive knowledge bases, deep language pro-
essing, agent reasoning, and agent learning. Recent applications
nclude Chester [23], which gives advice about taking medication,
nd PLOW [24], which learns task models from a collaborative
earning session. These systems exploit the TRIPS [25] environment
or dialog processing and agent reasoning.

Comparisons with other groups and approaches are far more
istant. Consider, for example, dialog processing, which is a cen-
ral component of OntoAgent. Most dialog systems cover narrow
omains of discourse and encode only those lexical elements that
ertain to a domain, thus artificially simplifying the very difficult
roblem of lexical ambiguity resolution. Examples of such systems

nclude: DUDE, A Dialog and Understanding Development Envi-
onment [26], which supports the development of dialog systems
overing routine questions in business domains, like ordering tick-
ts; and ALFRED, active logic for reason enhanced dialog [27], which
as been shown to be able respond to user needs in controlling
ool temperature settings, moving a toy train, playing different
ovies, etc. In OntoAgent, by contrast, the domain of interest is
uch broader and the problem of lexical ambiguity is faced head-

n, with no hand-picking of lexical senses for a specific domain.
Another point of contrast with others regards OntoAgent’s

efinition of virtual patient. The most common type of ìvirtual
atientî is not a simulation at all but, rather, a branching narrative
cenario organized as a decision tree that depicts a specific medical

ase from beginning to end (e.g., MedCases, Inc.). In these, user
ptions are restricted and responses are highly pre-scripted and
elivered through multiple-choice questions. Most importantly,

n such systems, (a) creating scenarios is very long and laborious,
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(b) scenarios are difficult, if at all possible, to modify in response
to changes in medical knowledge and practice without completely
rewriting the scenario (not so of our ontological models, which
can be readily modified), and (c) patient outcomes are fully pre-
determined by the scenario. The center of gravity in “branching
scenario” R&D is presentation issues [28,29]. Good visualization
solutions – sometimes using off-the-shelf speech recognition and
synthesis software – become the main avenue of enhancing the
verisimilitude of the interactive experience. Videos of human
actors, advanced graphics, including avatars, the incorporation
of off-the-shelf speech recognition and synthesis software and
visualization of results of medical tests (such as X-rays and MRIs)
have been prominent among the means of strengthening the
verisimilitude of the human-computer interactive experience.
Indeed, the latest VP environments, e.g., [30] show significant
progress even when compared to quite recent ones, e.g., [31].

The recent literature includes several contributions analyzing
the needs of medical AI and comparing those needs with avail-
able technologies. As concerns virtual patients, Stead and Lin’s [32]
desiderata closely match the features of OntoAgent agents, and
Stead and Lin’s belief in the need for “radical change” – i.e., the
development of truly sophisticated functionalities developed over
a long time – aligns with the OntoAgent philosophy as well.

The emphasis in OntoAgent is on acquiring knowledge that is
sufficiently deep to support the complex reasoning, simulation and
language processing required by the application. This is in con-
trast to many recent and current approaches – notably, in natural
language processing – that stress broad coverage of data at the
expense of the depth of acquired knowledge. Specifically, MVP uti-
lizes knowledge-rich approaches to NLP and agent modeling that
were more widely pursued 20 or 30 years ago than they are today.
Interest in plan- and goal-based R&D, as well as deep-semantic
NLP, dwindled when investigators concluded that they were too
labor-intensive to support practical applications. However, these
conclusions must be reassessed, particularly when juxtaposing past
efforts with the knowledge acquisition effort in MVP, which we
managed to keep within realistic limits of labor intensity while
maintaining sufficient depth and breadth of coverage for support
of the complex simulation, reasoning and natural language com-
munication application.

Much of the research on plan- and goal-based reasoning in AI
was devoted to creating systems that built plans on the fly. In MVP,
by contrast, we imposed the constraint that the system would not
be required to develop plans, it would only be required to use pre-
constructed plans. This simplifying constraint is well-suited to MVP
since system users will not be asked to solve never before seen types
of cases, and the system itself – in the guise of the virtual mentor
– will not be asked to invent novel approaches to patient care or
fundamentally creative responses to questions.

4. Inconsistency as a trigger for exploration

As people, we use inconsistencies as a trigger for reanalyzing
situations, questioning our understanding of them and/or seek-
ing further information. Inconsistencies arise when something
observed/reported conflicts with our expectations, or when mul-
tiple bits of evidence/reports conflict with each other. So, if a
pancake recipe (for a family, not an army) calls for a cup of salt,
you can confidently assume a typo based on knowledge of how
far a little salt goes; and if one contractor offers to do a job for
$1000 whereas another comes in at $12,000, you would be wise

not to blindly choose the lower bidder. In the first example, the
inconsistency stops you from making an inedible breakfast; in
the second example, the inconsistency leads you to investigate
whether different approaches to solving the problem are being
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Table 2
Some diagnostic inconsistencies relevant for a clinician.

Type Phenomena Opportunities afforded

1 Test results do not support the
doctor’s hypothesis about the
patient’s condition.

Do more testing to verify
results.
Rethink hypothesis.

2 The result of a treatment trial
does not support a clinical
diagnosis.

Rethink hypothesis.
Motivate patient to adhere to
treatment regimen.

3 Information reported by the
patient is inconsistent with

Determine if patient is not
telling the truth.
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observations. Teach/correct/encourage
patient.
Reevaluate observations.

roposed (short-term vs. long-term), and/or whether you are
ealing with a shady contractor.

Inconsistency can offer equally rich opportunities in the domain
f clinical medicine, as shown by the examples in Table 2 and dis-
ussed in turn subsequently.

Type 1: Test results do not support the physician’s hypothe-
is about the patient’s condition. A common sequence of events in
linical medicine is for a clinician to hypothesize a diagnosis based
n a patient interview and then follow up with medical testing. If
he testing does not corroborate the hypothesis – thus represent-
ng an inconsistency in the doctor’s mental model of the patient’s
ondition – this could represent several situations: the hypothe-
is was wrong; the hypothesis was correct but the condition is not
dvanced enough to be corroborated by the test; the hypothesis
as correct but the test results were flawed. The way the doc-

or responds to this inconsistency depends upon the interaction
f many factors, including at least the severity of the patient’s con-
ition (Is “wait and see” an option?), the strength of the hypothesis
Could another hypothesis readily account for the available data?)
nd the understood reliability of the test (How likely is a testing
rror?).4 The opportunities afforded by this type of inconsistency
nclude rethinking the hypothesis and/or verifying the test results,
oth of which are in service of better management of the patient.

Type 2: The result of a treatment trial does not support the
hysician’s hypothesis about the patient’s condition. In clinical
edicine, two types of diagnoses can be distinguished: defini-

ive diagnoses are confirmed by medical testing, whereas clinical
iagnoses are suggested based on the success of a therapeutic inter-
ention as a diagnostic test. As an example of the latter, if a doctor
elieves a patient has gastroesophageal reflux disease (GERD) he
an prescribe medication to reduce stomach acid; if the medication
mproves the symptoms, a clinical diagnosis of GERD can be posited.
f a diagnostic treatment trial proves ineffective for a patient, this
nconsistency could have several explanations: the patient could
ave shown poor adherence and admitted to it; the patient could
ave shown poor adherence but hidden it; the hypothesis was
orrect but the patient was a non-responder; or the hypothesis
as incorrect to begin with. The case of admitted lack of adher-

nce is relatively straightforward: barring significant changes in
atient health or the patient’s evaluation that he will again not
e able to comply (as might occur if the treatment involves a

ifficult-to-change lifestyle habit), the treatment protocol is typ-

cally repeated. Managing the other three cases, however, involves
decision whose input parameters include, non-exhaustively: an

4 The reliability of medical tests is statistically measured using sensitivity (the
ikelihood that the test will be positive given a patient with the condition) and
pecificity (the probability that the test will be negative given a patient without
he condition). Errors can occur for many reasons, including flawed administration
f the test, test results being interpreted incorrectly by specialists, and a failure to
ecognize interfering factors, such as the effects of current medications.
in Medicine 55 (2012) 137–148

evaluation of the strength of the hypothesis; the availability and
likelihood of alternative hypotheses; the efficacy rate of the treat-
ment; and whether or not the patient has a reason to misrepresent
his compliance (e.g., a teenage girl afraid of gaining weight might
refuse to take a drug with the side effect of weight gain, and might
be afraid to admit that to the doctor). The opportunities afforded by
this type of inconsistency include the clinician’s rethinking of the
hypothesis, which might have been incorrect, and the physician’s
encouraging the patient to comply with the treatment regime, if the
patient ultimately admits to non-compliance. The matter of detect-
ing and managing instances of patients not telling the truth is what
we turn to next.

Type 3. Information reported by the patient is inconsistent
with observations. If there was ever evidence for clinical medicine
involving a combination of art and science, this situation is the star
example because, intentionally or not, patients do not always tell
the truth. Part of the art of clinical medicine is determining whether
or not the patient’s report is likely to be true and, if not, why. The
“why” helps the physician to remedy the situation in a way that
is both compassionate and effective. Consider some of the many
reasons why a patient might not tell the truth:

• The patient fails to understand some information but is embar-
rassed to admit it. This can be due to many reasons, including
insufficient medical literacy [33], difficulty processing verbal
input, or a language barrier. The results include inadvertent mis-
interpretations of medication dosing, suboptimal post-operative
home care, etc.

• The patient fails to understand the importance of something and
therefore considers its misrepresentation to be inconsequential.
For example, some medications must be taken in a specific tem-
poral relationship to the ingestion of food. If a patient does not
understand that the medication loses efficacy if taken otherwise,
he might report that he is taking it on schedule even though he
is not.

• The patient has beliefs that he values more highly than telling the
whole truth. For example, patients of some socio-cultural back-
ground underrepresent their symptoms due the belief that it is
not honorable to admit to symptoms [34].

• The patient has some priority that does not align with the com-
mon doctor–patient goal of achieving effective treatment. For
example, if a teenage organ-transplant patient is prescribed a
high dose of the steroid Prednisone to prevent rejection of the
new organ, she might balk at the acne it causes as a side effect and
decide that clear skin is more important to her than the poten-
tial risks of not taking the medication. Of course, her priorities
would be seriously misguided since not taking the medication
could lead to loss of the organ and possibly death, which is why
the physician must be on the alert to detect lack of compliance
and encourage a subsequent change of behavior.

• The patient does not want to admit to a lack of willpower, as is
necessary for carrying out lifestyle modifications such as weight
loss or conquering addiction.

• The patient is embarrassed by a symptom, such as loss of sex drive
or flatulence.

• The patient is afraid of legal or other repercussions, as from illicit
drug use.

This list could go on. The point is that there are a lot of reasons
why a patient might not tell the doctor the truth, and the doctor
must not only be able to detect such instances (Why does this 16-
year old girl on a high dose of Prednisone not have acne?) but also

respond to them in a way that supports his collaboration with the
patient. This latter is a cornerstone of patient-centered medicine,
which interprets the patient as an active partner in his own health
care [35].
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focusing on the issue of not telling the truth, which is referred to
ontologically by the concept lie. It is reasonable to assume that the
average adult human knows that people can lie and understands
M. McShane et al. / Artificial Intel

If the doctor does suspect that the patient is not telling the
ruth, the next step is to determine whether or not the suspicion
s justified. The goal is to foster patient cooperation and collab-
ration, not to scold, embarrass or alienate the patient. In most
ases, this will involve showing compassion and understanding.
mong the strategies available to the clinician are: verify that the
atient understands the information by engaging in a conversation
bout it; explain the importance of precisely reporting key infor-
ation; explain why he is asking the question; reassure the patient

hat there is nothing to be embarrassed about; sympathize about
he difficulties faced by the patient; explain the consequences of

isreporting; clarify medical terminology; learn about the patient
s a person, asking him about his beliefs, priorities, values, etc.;
nd, in cases in which a patient is endangering his own well-being,
care the patient with the possible ramifications of his actions. In
ll cases, the plan selected by the clinician should be in service of
he joint goal of making the patient as healthy as possible. In many
ases the inconsistency between the patient report and observed
eality can be used by the clinician to explain his motivation for
urther pursuing specific factual details.

Of course, an inconsistency between an observed outcome and
patient report does not necessarily derive from a patient’s mis-

epresentation of the state of affairs: the patient might be an actual
utlier or might have made a genuine mistake. As such, a clini-
ian’s knowledge about possible causes for misreporting must be
ombined with other available data, such the patient’s character
raits and specifics of his condition.

Learning to skillfully manage these types of scenarios is cen-
ral to mastering the art of clinical medicine. The MVP application
escribed above seeks to foster the acquisition of this set of skills
in addition to many others. The optimal pedagogical support, we
elieve, is a tutoring agent endowed with the skills of an expert
linician who will follow the moves of the user (a clinician in train-
ng) as he or she practices interacting with VPs and will intervene

ith advice when necessary.
For this discussion, we select an example from a medical

omain that is not yet incorporated into MVP: organ transplant
urgery (MVP currently covers only diseases of the esophagus).

e pursue this hypothetical example because it provides a clear
llustration of the problem space under discussion – i.e., exploiting
ncongruity to clinical advantage. It must be emphasized, however,
hat all aspects of language understanding, memory augmentation
nd reasoning are the same no matter which medical domain is
eing addressed by MVP.

In our example scenario, the virtual patient is a 16-year old girl
ho had a kidney transplant a month ago. She was prescribed a high
ose of Prednisone to prevent organ rejection and does not have
cne. She is back for her first follow-up visit. An excerpt from the
hysician-patient dialog might go as follows, with the virtual tutor
himing in at the point at which it realizes that the physician has
ccepted the VP’s affirmation of medication compliance without
uestion.

octorSo, how have you been feeling?
P A little tired.
octorHave you been taking your Prednisone?
P Yeah.
octorAre you having any side effects?
P No.
octorHas your wound healed?
utor Back up a step: the absence of side effects with this dose of Prednisone

is unusual in patients her age.
octorLet’s return to that last question for a second – have you been taking the

full dose of Prednisone exactly as scheduled? The reason I ask is

because, as we discussed before your surgery, people your age almost
always get acne from this medication.

utor Nice bedside manner.
in Medicine 55 (2012) 137–148 145

Before discussing how this exchange is processed and inter-
preted by the tutoring agent, consider select aspects of the tutor’s
knowledge – stored in the fact repository (FR) – about the live
doctor and the virtual patient prior to the exchange.
human-fr1 is the doctor in training, Frederick Jones. He has lit-

tle medical experience, as shown by the value .3 on the abstract
scale {0,1}. The tutor has developed a model of Frederick’s ontol-
ogy based on (a) expectations about students with this level of
training and (b) evidence from Frederick’s interactions. The latter
information is associated with a higher confidence level than the
former since it has been explicitly attested. Every time Frederick
does something agentive while using the system – asks a ques-
tion, orders a test, explains something – that action is stored as a
filler of the agent-of slot is his FR frame. The same is true of every
other semantic role Frederick can play in an event – be he the benef
iciary-of it, the theme-of it, and so on.
human-fr1
has-personal-name frederick
has-surname jones
medical-experience .3
has-ontological-model [ontology.human-fr1]
has-fr [fr.human-fr1]
agent-of request-info-fr1
agent-of order-test-fr45
beneficiary-of respond-fr12
. . .

The tutor creates a similar fact repository profile of the virtual
patient, Sherry Palmeri, throughout the simulation, a short excerpt
of which is as follows:
human-fr2
has-personal-name sherry
has-surname palmeri
age 16
gender female
agent-of respond-fr1
experiencer-of kidney-failure-fr1
experiencer-of surgery-fr1
. . .

The concept instances used as fillers in these personal profiles
are also expanded into full frames in the fact repository. The frames
below say that the post-operative care for Sherry’s surgery includes
taking medicine; that the medicine prescribed is Prednisone with
the indicated dosage and duration; and that the purpose of taking
the medication is to prevent rejection of Sherry’s kidney.

surgery-fr1
experiencer human-fr2
post-op-care take-medication-fr1

take-medication-fr1
post-op-care-for surgery-fr1
agent human-fr2
theme prednisone
dosage 60mg/day
duration 1 month
purpose prevent-fr15

prevent-fr1
theme organ-rejection-fr1 ; a simplification

organ-rejection-fr1
experiencer human-fr2
theme kidney-fr1 ; Sherry’s new kidney

In addition to fact repository knowledge, the virtual tutor also
has extensive ontological knowledge, both in the medical domain
and in the general domain. Let us begin with the general domain,
5 We posit a “prevent” event for simplicity’s sake. The notion of “prevent” is
actually represented ontologically using modality scoping over a proposition.
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t least some reasons why someone might lie. As such, part of the
eneral ontology of all of our agents is a script about lying. Rather
han present a metalanguage version of the script for lying, we will
ender its relevant contents in English. The purpose of lie isdeceive.
etection of lying is recorded as a series of conditional statements
ssociated with probabilities, such as the following:

. If a reported event or state is impossible, then the likelihood of
that report being a lie is >99%. For example, an obese patient
reports having eaten fewer than 500 calories a day for a month
but has not lost any weight.

. If an event is reported to have taken place but its high-probability
effects or side effects do not occur, then the likelihood of that
report being a lie is a function of: (a) the probability of the given
effects or side effects, (b) the value of difficulty-attribute for
the event, (c) the value of embarrassment-level for the event, its
subevents or effects, and (d) the value of distress-level for the
event, its subevents or effects. For example, dieting is difficult and
failing to stick to a diet (a potential subevent of dieting) can be
embarrassing, so if a person reports that he has been on a strict
diet but has not lost any weight – i.e., a very high probability
effect did not occur – then there is a high probability that the
person is lying.

. An event is considered unacceptable or frowned upon by the
group to which the individual belongs and the event is a typical
symptom or subevent of an event that did happen or is happen-
ing. For example, a particularly macho man known to have bone
cancer might report little or no pain.

The tutor’s ontology is also rich with medical knowledge.
actoids that are important for our example are as follows, with a
loss preceding each knowledge structure.

There is a great potential for dying if an organ is rejected.
rgan-rejection
effect die (potential (>.9))

aking a large dose of Prednisone for a period of more than 2 weeks has
very high chance of causing severe acne in teens (similar structures

xist for different durations, ages, etc.).
ake-medication
agent human (age (>< 13 19))
theme prednisone (quant (> .6))
side-effect
if (duration (>2 (measured-in week)))
then (acne ((experiencer take-medication.agent)
(severity (>.7)) (probability .9)))))

he distress and embarrassment caused by acne can range from mild
.2) to severe (.9).
cne
distress-leve .2> < .9
embarrassment-level .2> < .9

ying can be caused by fear, embarrassment, non-compliance, etc.
ie
caused-by fear, embarrassment, non-compliance, . . .

on-compliance can be caused by side-effects of medication.
on-compliance
theme take-medication
caused-by take-medication.side-effect

It is important to understand that ontological knowledge can
e recorded at any grain size. For example, eating a sandwich can
e described from as few as 3 steps (bite, chew, swallow) to many
undreds of steps (extend hands toward sandwich, grasp sandwich,

ick up sandwich, raise sandwich toward mouth, . . . followed by
n almost infinitely complex rendering of the physiology of swal-
owing and digesting the food). We aim for a grain-size that is just
etailed enough to support our simulation needs.
in Medicine 55 (2012) 137–148

The final aspect of knowledge needed by the tutor to make
a successful intervention in our dialog is his inventory of
goals and their associated plans. On the one hand, he has
the “expert” version of the goals and plans that the doctor in
training is attempting to master by using the MVP system. Rel-
evant for our example are the goals (1) know-patient-symptoms
whose associated plans include request-info (i.e., ask a ques-
tion), physical-exam, detect-lying, pursue-lying-hypothesis, etc.
(we exclude details about how these events are related in the
diagnose-patient script) and (2) collaborate-with-patient, whose
associated plans include show-empathy, explain-questions, learn-
patient-priorities, etc. The second type of tutor goals and plans
apply directly to tutoring. Among these are the goals (1) avoid-
oversight whose plans include warn-about-oversight, and (2)
provide-positive-feedback whose plans include reinforce-good-
bedside-manner.

Returning to our dialog exchange, when the tutor follows the
conversation of the doctor and patient, it is playing two roles:
the role of expert physician and the role of tutor. As an expert
physician, it evaluates every move of by the doctor and evaluates if
it correlates with the tutor’s own mental model of what should be
done. If there is an inconsistency between the action of the doctor
and the good practices recorded in the tutor’s mental model, the
inconsistency triggers the need for a tutoring move. (Actually, it
can trigger one of many tutoring moves – among them being “let
the doctor continue to make his mistake and see what happens” –
but we constrain the discussion to the move of alerting the doctor
to his actual or potential mistake.)

Earlier, we showed the text meaning representation generated
for the sentence Are you having any side effects? It would take us
too far afield to describe how OntoSem interprets the fragment
response “No” (for that, see [5,36]), but suffice it to say that the
result of interpreting this pair of dialog turns is for the tutor’s FR to
be supplemented by the boldface information about the VP below:
human-fr2
has-personal-name sherry
has-surname palmeri
age 16
gender female
agent-of respond-fr1
agent-of take-medicine-fr1
experiencer-of kidney-failure-fr1
experiencer-of surgery-fr1
experiencer-of [not] side-effect-fr16

. . .

Every time a VP responds to a question, the tutor’s detect-lying
function is activated, representing the cognitive reality that people
are always on the lookout for lies, even if they are not paying atten-
tion to that at all times. As described earlier, one of the conditional
statements in the detect-lying function is: If an event is reported to
have taken place but its high-probability effects or side effects do not
occur, then the likelihood of that report being a lie is a function of:
(a) the probability of the given effects or side effects, (b) the value of
difficulty-attribute for the event, (c) the value of embarrassment-
level for the event, its subevents or effects, and (d) the value of
distress-level for the event, its subevents or effects. Applying this
to our context, the function looks as follows:
6 We use “[not] side-effect” as a pretty-printed representation of our canonical
method for indicating negation: scoping epistemic modality with a value of 0 over
the event.
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ikelihood of acne for a teenager on a high dose of
rednisone:

.9

alue of difficulty-attribute for take-medication: .05
alue of embarrassment-level for take-medication: 0
alue of embarrassment-level for acne (an effect of
ake-medication):

.2 > < .9

alue of distress-level for take-medication: 0
alue of distress-level for acne: .2 > < .9

The combination of the very high likelihood of acne and the
otentially very high levels of embarrassment and distress caused
y acne lead to a high value for this function, the mathematical
etails of which we leave aside. As such, the tutor suspects – and
herefore believes that the doctor should suspect as well – that the
atient might be lying. The fact that the doctor does not pursue this
ypothesis but, rather, moves on to a new question, indicates to the
utor that the doctor failed to detect a potential lie, which triggers
he tutoring intervention. Obviously, the intervention cannot occur
efore the next question is asked because the tutor cannot read the
octor’s mind.

The tutor will recognize the doctor’s good bedside manner using
similar strategy. One of the standing goals of the tutor is to rein-

orce good bedside manner, which includes, among other things,
xplain-questions, which is exactly what the doctor does. Whereas
well-configured tutor will not intervene every time a user does

omething right – a practice that would be highly annoying – this
ntervention shows that the tutor is evaluating every move as being
ither consistent or inconsistent with the tutor’s expert knowledge
f the processes of diagnosing and treating a patient.

Implementation of these agent functionalities described above
s currently in progress in our broad program of work on goal- and
lan-based reasoning by intelligent agents.

. Discussion

This paper has shown that just as inconsistency is a central
ool for human clinicians and tutors, so can it be for intelligent
gents modeled to fulfill these roles. In fact, inconsistency is just
ne of many phenomena that, while most typically looked upon
s “bugs” – or at least headaches – by developers, actually can be
ecast as useful features for intelligent agents. By way of situating
he reported work in a broader context, let us briefly consider a
ew more traditionally marginalized phenomena that are actually
seful in societies of human-like intelligent agents.

In the fields of semantic analysis and reference resolution, most
ractical work has pursued the goal of finding exactly one precise
eaning for every word and exactly one precise sponsor for every

eferring expression, respectively. However, referential ambiguity
nd underspecification are not always mistakes – they afford the
enefit of freeing speakers from introducing unnecessary details
nd making irrelevant distinctions, and they free listeners from
nterpreting such details and distinctions. For example, sentence
1) below shows referential ambiguity for the expression it since
his expression can be understood to refer to the coffee, the cup,
r the coffee and cup together. Since all of these interpretations
ould lead to the similar knowledge base amendments and would

upport similar reasoning by the intelligent agent, this ambiguity
an be considered benign. (For discussion of related issues in
orpus annotation, see [37].)

. Please pour some fresh coffee into your dad’s favorite mug and
ring it to him upstairs.

xample (2) illustrates semantic underspecification: it is probably

ot the case that every minute of the school day was boring – the
oint is that the child’s overall impression of school was boredom.
hus, the focus is on the child’s experience, not the particular
ctivities that made him feel that way.
in Medicine 55 (2012) 137–148 147

2. [A child walking home from school with his pals] Man, that was
boring as always!

Examples such as these suggest that the narrow, traditionally
understood goals of semantic analysis and reference resolution
– as pursued in various narrow-task competitions – are, at best,
incomplete. Instead, the option for fuzzy reference and underspec-
ification must be available to agents, with further specification
being pursued only if agent goals should require that knowledge.
The important point here is that the impetus to reinterpret certain
intermediate goals of text analysis derives from the broader goal of
creating intelligent agents that do something useful. To put a finer
point on it: semantic disambiguation and reference resolution in
isolation are of no use by themselves, and positing “end goals” for
events that are, at base, not an end in themselves is not justified.
Similarly, inconsistency is, in the abstract, neither positive nor
negative – it simply is in human societies, and should, in turn, be
exploited and managed in societies of agents that include or model
humans.

As we said in the introduction, the term inconsistency tends
to imply the absence of a goal state of consistency. However,
in societies of people and human-like intelligent agents, inter-
agent inconsistencies are norm: every agent will have a different
ontology, lexicon and fact repository, as well as different decision
functions deriving from its personality traits and physical and men-
tal states. As such, imposing the expectation of consistency on a
society of intelligent agents would simply be wrong. Whereas not
all inconsistencies are as directly useful as the ones described above,
they can be managed equally well when planned for properly.

In the context of clinical medicine, two types of inconsistency
among agents are of particular importance: differences between
the factual knowledge bases (ontology and lexicon) of physicians
and patients, and differences in the priorities and preferences of
physicians and patients, as reflected in their decision functions.
That is, if a physician wants to make fast and effective progress with
a patient, he should (a) attempt to predict what the patient does and
does not know, (b) talk in a language the patient understands, (c) do
his best to make sense of the expectedly non-technical descriptions
provided by the patient and (d) be prepared to teach the patient
what he needs to know. In addition, if the physician wants the
patient to comply with a treatment protocol, he should collaborate
with the patient, taking into consideration his priorities and prefer-
ences, even if they do not align with his own. Within the OntoAgent
environment, we are working on four core capabilities that permit
agents to manage inter-agent inconsistencies: the dynamic mod-
eling of the knowledge bases of other agents; the management of
linguistic and meta-language paraphrase [7,8]; the ability to teach
and learn new ontological and lexical knowledge [11]; and the abil-
ity to collaborate in decision-making [3]. The modeling of these
capabilities shows many of the same expectation-oriented charac-
teristics as the modeling of the capabilities that permit agents to
exploit the diagnostically useful inconsistencies described in this
paper.

A natural question is, Is the OntoAgent approach really feasi-
ble? We believe that it is for, among others, the following reasons.
Our development efforts are targeted toward specific applications:
there is no attempt to develop a fully generalized, plug-in ready
cognitive architecture (like, e.g., TRIPS [25]), or to implement a
domain-independent dialog system, or to equip system agents with
all of the plans and goals of human beings, or to endow them with
the full spectrum of possible character traits (as is done in theo-

retical approaches to affective modeling). Instead, theoretical and
practical advancements are geared toward the near- and long-term
future of specific systems, with infrastructure decisions being made
with a long-term view but knowledge support targeted at near- and
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