
Mainstream natural language processing (NLP)
of the past 25 years has concentrated on the
manipulation of text strings within the empir-

ical — so-called knowledge-lean — paradigm, in which
sophisticated statistical techniques operate over large
corpora, often relying on manual annotations to seed
the learning process. The empirical paradigm has been
quite successful in achieving a useful level of results for
certain types of applications, such as knowledge extrac-
tion, question answering, and machine translation
between pairs of languages for which large parallel cor-
pora are available. It has also advanced our under-
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� Developing cognitive agents with human-level nat-
ural language understanding (NLU) capabilities
requires modeling human cognition because natural,
unedited utterances are anything but neat and com-
plete; so understanding them requires the ability to
clean up the input and fill in the lacunae. Indeed, lan-
guage inputs regularly feature complex linguistic phe-
nomena such as lexical and referential ambiguity,
ellipsis, false starts, spurious repetitions, semantically
vacuous fillers, nonliteral language, indirect speech
acts, implicatures, and production errors. Moreover,
cognitive agents must be nimble in the face of incom-
plete interpretations since even people do not perfectly
understand every aspect of every utterance they hear.
This means that once an agent has reached the best
interpretation it can, it must determine how to proceed
— be that acting upon the new information directly,
remembering whatever it has understood and waiting
to see what happens next, seeking out information to
fill in the blanks, or asking its interlocutor for clarifi-
cation. The reasoning needed to support NLU extends
far beyond language itself, including, nonexhaustively,
the agent’s understanding of its own plans and goals;
its dynamic modeling of its interlocutor’s knowledge,
plans, and goals, all guided by a theory of mind; its
recognition of diverse aspects of human behavior, such
as affect, cooperative behavior, and the effects of cog-
nitive biases; and its integration of linguistic interpre-
tations with its interpretations of other perceptive
inputs, such as simulated vision and nonlinguistic
audition. Considering all of these needs, it seems hard-
ly possible that fundamental NLU will ever be achieved
through the kinds of knowledge-lean text-string manip-
ulation being pursued by the mainstream natural lan-
guage processing (NLP) community. Instead, it requires
a holistic approach to cognitive modeling of the type we
are pursuing in a paradigm called OntoAgent.



standing of statistical “big data” methods them-
selves, quite apart from their application to NLP.
However, the knowledge-lean orientation has
become so thoroughly ensconced that its shortcom-
ings — such as the inability to compute and record
meaning (the basis of natural language understanding,
or NLU) — seem to occupy a blind spot for the field
at large. This is unfortunate because NLP and NLU are
different beasts entirely, and both have their place in
the forward march of science and technology … or at
least they should. Unfortunately, NLU has gotten
squeezed almost to the point of extinction.

Kenneth Church (2011) presents a compelling
analysis of this state of affairs, describing the pendu-
lum swings between rationalism and empiricism
starting with the inception of the field of computa-
tional linguistics in the 1950s. He attributes the full-
on embracing of empiricism in the 1990s to a com-
bination of pragmatic considerations and the
availability of massive data sources. 

The field had been banging its head on big hard chal-
lenges like AI-complete problems and long-distance
dependencies. We advocated a pragmatic pivot toward
simpler more solvable tasks like part of speech tagging.
Data was becoming available like never before. What
can we do with all this data? We argued that it is bet-
ter to do something simple (than nothing at all). Let’s
go pick some low hanging fruit. Let’s do what we can
with short-distance dependencies. That won’t solve
the whole problem, but let’s focus on what we can do
as opposed to what we can’t do. The glass is half full
(as opposed to half empty) (Church 2011, p. 3).

In this essay, aptly titled “A Pendulum Swung Too
Far,” Church calls for the need to reenter the debate
between rationalism and empiricism not only for sci-
entific reasons, but for practical ones as well: 

Our generation has been fortunate to have plenty of
low hanging fruit to pick (the facts that can be cap-
tured with short ngrams), but the next generation will
be less fortunate since most of those facts will have
been pretty well picked over before they retire, and
therefore, it is likely that they will have to address facts
that go beyond the simplest ngram approximations
(Church 2011, p. 7).

My framing of the current article dovetails with
Church’s must-read essay. I will point out a number
of unmotivated beliefs whose veracity crumbles as
soon as one scratches the surface. How these beliefs
attained quasi-axiomatic status among the NLP com-
munity is a fascinating question, answered in part by
one of Church’s observations: that recent and current
generations of NLPers have received an insufficiently
broad education in linguistics and the history of NLP
and, therefore, lack the impetus to even scratch that
surface. 

Unmotivated Axiom #1:
The Knowledge Bottleneck
The early work on knowledge-based language pro-
cessing systems, which was inspired by the original

goals of AI dating back to the 1950s, had dwindled to
a trickle by the mid-1990s. The main culprit was dis-
illusionment with how difficult the automation of
language understanding turned out to be (see Niren-
burg and McShane [2016a] for a historical perspec-
tive). The one-liner scapegoat was the knowledge
bottleneck: the reality that language understanding
requires machine-tractable lexical and ontological
knowledge, along with reasoners that can exploit it
— all of which are expensive to build. Although
knowledge-lean approaches purported to circumvent
this problem, those that involve supervised learning
— and many do — simply shift the work of humans
from building lexicons and ontologies to annotating
corpora. When the resulting supervised learning sys-
tems hit a ceiling of results, developers point to the
need for more or better annotations. Same problem,
different veneer. Moreover, as Zaenen (2006) correct-
ly points out, the success of supervised machine
learning for syntax does not promise similar success-
es for linguistic phenomena that are less well under-
stood, such as reference resolution or mapping lin-
guistic structures to the state of the world. In short, it
is not the case that knowledge-based methods suffer
from knowledge needs whereas knowledge-lean
methods do not: the higher-quality knowledge-lean
systems do require knowledge in the form of annota-
tions. Moreover, all knowledge-lean systems avoid
phenomena and applications that would require
unavailable knowledge support. What do all of those
exclusions represent? All of the issues whose solution
is necessary to attain the next level of quality of auto-
matic language processing. 

Unmotivated Axiom #2:
Knowledge-Based Methods 
Were Tried and Failed
Yorick Wilks (2000) says it plainly: “… The claims of
AI/NLP to offer high quality at NLP tasks have never
been really tested. They have certainly not failed, just
got left behind in the rush towards what could be eas-
ily tested!” Everything about computing has changed
since the peak of knowledge-based work in the mid-
1980s — speed, storage, programming languages,
their supporting libraries, interface technologies, cor-
pora, and more. So comparing statistical NLP systems
of the 2010s with knowledge-based NLP systems of
the 1980s says nothing about the respective utility of
these R&D paradigms. As a side note, one can’t help
but wonder where knowledge-based NLU would
stand now if all, or even a fraction, of the resources
devoted to statistical NLP over the past 25 years had
remained with the goal of automating language
understanding. 

Unmotivated Axiom #3:
NLU Is an Extension of NLP 
Fundamental NLU has little to nothing in common
with current mainstream NLP; in fact, I think it has
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much more in common with robotics. Like robotics,
NLU is most naturally pursued in service of specific
tasks in a specific domain for which the agent is sup-
plied with the requisite knowledge and reasoning
capabilities. However, whereas domain-specific ro -
botics successes are praised (and rightly so!), domain-
specific NLU successes are criticized for not being
immediately applicable to all domains — under the
pressure of evaluation metrics entrenched in statisti-
cal NLP.1 One step toward resolving this miscasting of
NLU might be the simple practice of reserving the
term NLU for actual deep understanding, rather than
watering it down by applying it to any system that
incorporates even cursory semantic or pragmatic fea-
tures. Of course, marrying robotics with NLU is a nat-
ural fit.

Unmotivated Axiom #4:
It’s Either NLP or NLU
One key to the success of NLP has been finding appli-
cations and system setups that circumvent the need
for language understanding. For example, consider a
question-answering system that has access to a large
and highly redundant corpus. When asked to indi-
cate when the city of Detroit was founded, it can hap-
pily ignore formulations of the answer that would
require sophisticated linguistic analysis or reasoning
(It was founded 2 years later; That happened soon after-
ward) and, instead, fulfill its task with string-level
matching against the following sentence from
Wikipedia: “Detroit was founded on July 24, 1701 by
the French explorer and adventurer Antoine de la
Mothe Cadillac and a party of settlers.”2 However,
not all language-oriented applications offer such
remarkable simplifications. For example, agents in
dialogue systems receive one and only one formula-
tion of each utterance. Moreover, they must also deal
with performance errors such as unfinished
thoughts, fragmentary utterances, self-interruptions,
repetitions, and non sequiturs. Even the speech sig-
nal itself can be corrupted, as by background noise
and dropped signals. Consider, in this regard, a short
excerpt from the Santa Barbara Corpus of Spoken Amer-
ican English, in which the speaker is a student of
equine science talking about blacksmithing:

we did a lot of stuff with the — like we had the, um, ...
the burners? you know, and you’d put the — you’d
have — you started out with the straight  iron? .. you
know? and you’d stick it into the,  into the,  you know
like, actual blacksmithing (Du Bois et al. 2000–2005).3

Unsupported by the visual context or the intona-
tion and pauses of spoken language, this excerpt
requires quite a bit of effort even for people to under-
stand. Presumably, we get the gist thanks to our onto-
logical knowledge of the context (I told you that the
topic was blacksmithing). Moreover, we make deci-
sions about how much understanding is actually
needed before we stop trying to understand further.
In sum, NLP has one set of strengths, purviews, and

methods and NLU has another. These programs of
work are complementary, not in competition. 

Unmotivated Axiom #5:
Whereas Mainstream NLP Is 
Realistic, Deep NLU Is Unrealistic 
The miscomprehension here derives from an undue
emphasis on compartmentalization. If one plucks
NLU out of overall agent cognition, dangles it by
itself, and expects meaning analysis to be carried out
to perfection in isolation, then I would agree that the
task is unrealistic. However, this framing of the prob-
lem is misleading.4 To understand language inputs, a
cognitive agent must know what kinds of informa-
tion to rely upon during language analysis and why;
it must also use stored knowledge to judge how
deeply to analyze inputs. Analysis can involve multi-
ple passes over inputs, requiring increasing amounts
of resources, with the agent pursuing the latter stages
only if it deems the information worthy of the effort.
For example, a virtual medical assistant tasked with
assisting a doctor in a clinical setting can ignore inci-
dental conversations about pop culture and office
gossip, which it might detect using a resource-light
comparison between the input and its active plans
and goals. By contrast, that same agent needs to
understand both the full meaning and the implica-
tures in the following doctor-patient exchange
involving a patient presenting with gastrointestinal
distress: 

Doctor: “Have you been traveling lately?” 
Patient: “Yes, I vacationed in Mexico two weeks ago.” 

For further discussion of the need for integrated cog-
nitive language processing — along with proven suc-
cesses in a robotic implementation — see Lindes and
Laird (2016). 

Recap
To recap, I have just suggested that five misconcep-
tions have contributed to a state of affairs in which
statistical NLP and knowledge-based NLU have been
falsely pitted against each other. But this zero-sum-
game thinking is too crude for a domain as complex
as natural language processing/understanding. The
NLP and NLU programs of work pursue different
goals and promise to contribute in different ways, on
different timelines, to technologies that will enhance
the human experience. Clearly there is room, and a
need, for both. 

In the OntoAgent paradigm in which I work, we
are as tantalized by the prospects of human-level lan-
guage understanding as were the founders of AI over
a half century ago. We find it fascinating that lan-
guage strings represent only the tip of the iceberg of
language meaning, and that every speaker of every
language is a master of effortlessly recreating a func-
tionally sufficient approximation of the whole ice-
berg. Endowing agents with such immense capabili-
ties is challenging. This article identifies some of the



linguistic challenges faced by cognitive agents tasked
with fully interpreting natural language, and it
explains the knowledge-based, reasoning-oriented
modeling strategies used to address them in the
OntoAgent cognitive architecture. In this article I will
focus on select examples, keep formalisms to a mini-
mum, and omit details that can be found in cited
publications. I will show that modeling cognition
requires an integrated approach to NLU, one that
allows us to use many types of language analysis to
attain a high quality of results that would be difficult
or even arguably impossible to achieve with string-
level processing or narrow task- or method-driven
approaches. Finally, I will suggest that fundamental
NLU should return to the central agenda of AI, not to
compete with mainstream NLP on what the latter
does well, but to give rise to a new generation of more
sophisticated language-endowed intelligent agents
(LEIAs). 

A question that will naturally arise with respect to
the descriptions that follow is, “Has all of this been
implemented?” The short answer, which I will
expand upon at the end, is that much of it has been
implemented, with various levels of coverage of sub-
phenomena. But more importantly, we have demon-
strated, through a combination of implementation
and formal algorithm specification, that none of
what we do requires a “magic happens here” step: we
have developed methods to operationalize all of these
capabilities and are testing these methods in imple-
mentations that use nontoy knowledge bases. No
doubt, additional knowledge engineering (the expan-
sion of the lexicon, ontology, rule sets) is always use-
ful and will be an ongoing concern; but knowledge
engineering is just work, involving relatively straight-
forward variations once the conceptual and method-
ological themes have been established. Our hope that
this work will garner the enthusiasm, support, and
resources to allow it to flourish is fueled by our
knowledge that eminent thinkers such as Annie Zae-
nen (2006), Ray Jackendoff (2007), Kenneth Church
(2011), and John Laird (Laird, Lebiere, and Rosen-
bloom 2017), to name just a few, have been voicing
compatible views about the need for deep language
understanding for language-endowed cognitive
agents. 

Ontological Semantics for LEIAs
NLU in OntoAgent follows the theory of Ontological
Semantics (OS; Nirenburg and Raskin 2004). The goal
of OS language understanding is to generate contex-
tually disambiguated, ontologically grounded text
meaning representations that are stored to agent
memory in support of subsequent reasoning about
action. Individual linguistic phenomena are treated
by microtheories which, at any given time, can be at
various stages of advancement both descriptively and
in terms of implementation. For example, recently

published OS microtheories address topics such as
lexical disambiguation (McShane, Nirenburg, and
Beale 2016), multiword expressions (McShane, Niren-
burg, and Beale 2015), nominal compounds (Mc -
Shane, Beale, and Babkin 2014), verb phrase ellipsis
(McShane and Babkin 2016a), and unexpected input
(McShane, Blissett, and Nirenburg 2017). 

The OS language analyzer is supported by a 30,000-
sense semantic lexicon and a 9,000-concept, property-
rich ontology. Although knowledge bases of this size
do not provide comprehensive coverage of all
domains, they are a far cry from the so-called toy sys-
tems of early AI, and they serve as a realistic test case
for our theories and methods. For example, the OS
lexicon has several dozen senses of the word take,
most of them idiomatic or construction-like (take pity
on, take a shower, take leave of, and so on). Each sense
is supplied with lexical, syntactic, and semantic con-
straints, which, in the best case, allow the analyzer to
converge on exactly one disambiguation decision per
context. However, given that most sentences contain
more than one multiply ambiguous word, and given
that extra-sentential context is often needed for dis-
ambiguation, other heuristic evidence can be required
to arrive at an interpretation, such as reference reso-
lution, contextually triggered ontological scripts, the
plans and goals on the agent’s agenda, and even the
results of processing inputs through other channels of
perception, such as simulated vision. 

Although OS language analysis methods can be
applied to any domain, the approach is better suited
to applications for which additional knowledge of the
types just mentioned can be recorded. This reflects
the fact that language understanding, for humans
and machines alike, is never just about the words in
a sentence, it always requires background knowledge
and contextual awareness. A recent prototype system
that demonstrated how OS language understanding
can contribute to overall agent functioning within a
defined domain is the Maryland Virtual Patient pro-
totype physician training system, in which a cohort
of intelligent agents — endowed with both physio-
logical and cognitive simulations — served as virtual
patients who could be diagnosed and treated by sys-
tem users (Nirenburg, McShane, and Beale 2008;
McShane and Nirenburg 2012; McShane et al. 2012;
McShane, Nirenburg, and Jarrell 2013). 

Reasoning During 
Language Understanding

This section presents a sampling of the types of rea-
soning applied to language understanding by lan-
guage-endowed intelligent agents (LEIAs) in OntoA-
gent, starting with the simplest example and
progressing to more complicated cases.5 In all
instances, the reasoning is inspired by our hypothe-
ses about human cognition, but the implementations
reflect computationally expedient ways of realizing
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humanlike results. Readers who choose to skim
through the technical details are nevertheless
encouraged to reflect on how much reasoning people
actually apply to language understanding — auto-
matically, without effort, and usually without even
noticing that there is anything to reason about.

Matching Recorded Constraints
The simplest case of language analysis is illustrated
by the example A brown squirrel is eating a nut. For this
input, like any other, the LEIA must disambiguate
each lexeme (that is, understand it as an instance of
a particular concept in its ontology) and combine
those interpretations into an overall semantic repre-
sentation like the one in figure 1.

The representation in figure 1 is read as follows.
The first frame is headed by a numbered instance of
the concept INGEST, concepts being distinguished
from words of English by the use of small caps.6

INGEST-1 has three contextually relevant property val-
ues: its AGENT (the eater) is an instance of SQUIRREL, its
THEME (what is eaten) is an instance of NUT-FOODSTUFF,
and the TIME of the event is the time of speech, which
must be computed by the agent, if possible, using the
procedural semantic routine find-anchor-time (this
routine has not yet been launched at the stage of
analysis shown here). The next frame, headed by
SQUIRREL-1, shows not only the inverse relation to
INGEST-1, but also that the COLOR of this SQUIRREL is
BROWN. Since we have no additional information
about the nut, its frame — NUT-FOODSTUFF-1 — shows
only the inverse relation with INGEST-1. Developer
views of text meaning representations also include
many types of metadata, such as which word of input
gave rise to each frame, which lexical sense provided
the given interpretation, and so on. 

Abstracting away from details of particular imple-
mentations of OS,7 let us work through the analysis
process. First the input is syntactically parsed using a
parser developed externally from our system.8 Then
the LEIA attempts to align the parse with the syntac-
tic expectations recorded in the lexicon for the words
in the sentence. For example, when it looks up the
verb eat, it finds three senses: one is optionally tran-
sitive and means INGEST; the other two describe the
idiom eat away at in its physical and abstract senses
(The rust ate away at the pipe; His behavior is eating
away at my nerves!). Since the idiomatic senses require
the words away at, which are not present in our
input, they are rejected, leaving only the INGEST sense
as a viable candidate.9 A simplified version of the
needed lexical sense is shown in figure 2. 

The syntactic structure (syn-struc) zone says that
this sense of eat is optionally transitive: it requires a
subject and can be used with or without a direct
object. The semantic structure (sem-struc) zone  says
that this sense of eat means INGEST. Each constituent
of input is associated with a variable in the syn-struc:
the subject is $var1 and the direct object is $var2.

Those variables are linked to their semantic interpre-
tations in the sem-struc (^ is read as “the meaning
of”). So the word that fills the subject slot in the syn-
struc ($var1) must first be semantically analyzed,
resulting in ^$var1 (the meaning of $var1); that con-
cept can then be used to fill the AGENT role of INGEST.
For example, given our input A brown squirrel is eating
a nut, the LEIA links the word squirrel to $var1 then
semantically analyzes it as SQUIRREL before using it to
fill the AGENT role of INGEST. An analogous process
occurs for $var2/^$var2. The ontology, for its part,
constrains the valid fillers of the case-roles of INGEST

as shown in figure 3.
This excerpt from the ontological frame for INGEST

— which actually contains many more properties
and expectations about their values — says that its
typical AGENT (that is, the basic semantic constraint
indicated by the sem facet) is an ANIMAL; however, this
constraint can be relaxed to SOCIAL-OBJECTs (for exam-
ple, The fire department eats a lot of pizza). Similarly,
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Figure 1. The Text Meaning Representation for 
A Brown Squirrel Is Eating a Nut.

 
INGEST-1 

AGENT     SQUIRREL-1 
THEME  NUT-FOODSTUFF-1 
TIME  find-anchor-time  

  
SQUIRREL-1 

  COLOR  BROWN  
  AGENT-OF INGEST-1  
  

NUT-FOODSTUFF-1 
  THEME-OF INGEST-1 
 

Figure 2. A Simplified Version of the INGEST Sense of Eat.

 
eat-v1: “ingest,” as in “He was eating (cheese).” 
 
syn-struc        sem-struc  
 subject  $var1       INGEST  
 root   $var0       AGENT  ^$var1 
 directobject $var2  (optional)   THEME  ^$var2 
 
 



the description of the THEME indicates that FOOD, BEV-
ERAGE, and INGESTIBLE-MEDICATION are the most typical
THEMEs, but other ANIMALs and PLANTs not already sub-
sumed by the FOOD subtree might be consumed as
well. HUMANs are explicitly excluded as ingestibles
using the not facet since they would otherwise be
understood as unusual-but-possible ingestibles due to
their placement in the ANIMAL subtree.10

Having narrowed down the interpretation of eat to
a single sense, the LEIA must now determine which
senses of squirrel, brown, and nut best fit this input.
Squirrel and brown are easy: the lexicon contains only
one sense of each, and these senses fit well semanti-
cally (SQUIRREL is a suitable AGENT of INGEST, and BROWN

is a valid COLOR of SQUIRREL). However, there are three
senses of nut: an edible foodstuff, a crazy person, and
a machine part. We just saw that neither people nor
machine parts are suitable THEMEs of INGEST, leaving
only the NUT-FOODSTUFF sense, which perfectly fits the
ontological constraints of INGEST and is selected as a
high-confidence interpretation. 

Operationally speaking, the meaning representa-
tion for A brown squirrel is eating a nut is generated by
(1) copying the sem-struc of eat-v1 into the nascent
text meaning representation; (2) translating the con-
cept type (INGEST) into an instance (INGEST-1); and (3)
replacing the variables with their appropriate inter-
pretations (SQUIRREL-1 [COLOR BROWN], NUT-FOODSTUFF-
1). In terms of run-time reasoning, this example is as
simple as it gets since it involves only constraint
matching, and all constraints match in a unique and
satisfactory way. “Simple constraint matching” does
not, however, come for free: its precondition is the
availability of high-quality lexical and ontological
knowledge bases that are sufficient to allow the LEIA
to disambiguate and validate the semantic congruity
of its interpretations. 

Incorporating Contextual Clues 
The combination of lexical, syntactic, and semantic
constraints within the local dependency structure
does not always lead to a single high-confidence
interpretation of an input. For example, He kicked the

bucket could refer to dying or making foot contact
with a container. Both of these interpretations are
provided for by the OS lexicon: there is an idiomatic
sense of kick that requires the direct object to be the
bucket and means DIE; and there is a physical-action
sense that can take any physical object as its THEME

and means KICK. Disambiguation requires context,
but “using the context” is impotently vague until
grounded in machine-tractable heuristics. Luckily, in
this case, we have a point of traction, but under-
standing it requires appreciating the multifunction-
ality of the easily overlooked word the in English. 

Apart from indicating coreference with an already-
introduced object (A dog loped into the room, startling
the resident cat. Luckily, the dog turned out to be friend-
ly), the is used in proper names (the CIA), in idioms
(on the one hand … on the other hand; kick the bucket),
in so-called “universally known” objects (the sun, the
solar system), in superlatives (the best ice cream in the
world), in ordinals (the second barn on the left), and
more. So, every time a LEIA encounters the word the
it must ask, “Does this indicate coreference, or is its
use licensed in some other way?” To decide, the LEIA
searches the context for an available coreferent. If it
finds a strong candidate, it creates the coreference
link and selects the associated interpretation; if not,
it uses an interpretation that does not require an
antecedent. Let us trace how this works using the
examples that follow. 

(1) Be sure your paint is in a tall bucket and on a tarp
so that if you accidentally kick the bucket you won’t
stain the floor.
(2) Claude tried to milk the cows quietly so as not to
wake everyone up, but he kicked the bucket, which got
the dogs barking, which roused the whole house.

When processing (1), the LEIA will evaluate and score
all candidate antecedents for “the bucket”: your paint,
a tall bucket, a tarp. The candidate “a tall bucket” (ana-
lyzed as [BUCKET: HEIGHT .8]) will receive a very high
coreference score since it is nearby and maps to the
same ontological concept. This coreference score will
be combined with the high semantic score for the lit-
eral interpretation of kick the bucket since the physical
interpretation of BUCKET is a perfect THEME of KICK. The
resulting high score for the contextually sensitive, lit-
eral interpretation of kick the bucket will win out over
the idiomatic reading, since the latter will be penal-
ized for having to ignore the available coreferent for
the bucket. 

Example (2) also introduces a bucket into the con-
text, but it does so implicitly. Even nonfarmers know
that to milk a cow one takes a bucket, puts it under
the cow’s teats and squeezes them to release the milk
into the bucket. Therefore, as soon as cow milking
enters the context, a bucket is virtually available.
How can we be sure that bucket has been virtually
introduced into the context? By the fact that we can
refer to it using the! Consider some analogous con-
texts: On my flight to Hawaii the pilot talked a lot; Oh,
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Figure 3. An Excerpt from the Ontological Frame for INGEST.

 
INGEST 
 AGENT  sem   ANIMAL 
    relaxable-to SOCIAL-OBJECT    
 THEME  sem   FOOD, BEVERAGE, INGESTIBLE-MEDICATION 
    relaxable-to ANIMAL, PLANT     
    not    HUMAN 
    



dreaded lectures when the speaker mumbles!; If you buy
an old car, don’t expect the air conditioning to work.
LEIAs can carry out this same kind of reasoning if
their ontologies are supplied with scripts — that is,
typical sequences of events and their participants
(Schank and Abelson 1977). In order to find a script-
based justification for a the-phrase, the agent must
search its ontology for all of the events mentioned in
the immediate context and see if the given object is
listed among the participants. Finding one both jus-
tifies the use of the and suggests a literal interpreta-
tion of the object in the context. If, by contrast, the
agent does not find a strong coreferent for bucket, it
will happily use the idiomatic reading (DIE) that does
not require one. 

Leveraging Rules of Thumb
When recorded constraints, reference resolution, and
ontological scripts are still not sufficient to disam-
biguate an input, rules of thumb can sometimes help
— as long as they are appropriately understood as

defeasible preferences. Consider the sentence My
grandmother saw her doctor yesterday. Outside of con-
text, the default interpretation is that my grand-
mother attended a medical consultation provided by
her doctor. However, my grandmother could also
have simply caught sight of her doctor, an interpre-
tation preferred if we add the modifier at the beach.
Moreover, if we really beef up the context, we can
turn grandma into the person providing the profes-
sional consultation: My grandmother is the leading
lawyer in the city. Everybody looks to her for advice. In
fact, she saw her doctor yesterday and Dad’s chiropractor
day before, both of whom were dealing with malpractice
suits. 

Consider how a LEIA can use rules of thumb to
help its understanding of these contexts. Among the
many senses of see in the OS lexicon, three are rele-
vant here. Informally, they are depicted in figure 4
(note that I saw my doctor and My doctor saw me can
mean the same thing in the professional-consultation
sense):
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Figure 4. Three Senses of See in the OS Lexicon.

 
1.  Definition:  A professional advises someone. 

Example:   My doctor sees patients every day from 8 till 5.  
 Constraints:  The subject indicates a PROFESSIONAL and the direct object indicates a HUMAN. 
 Meaning:   PROVIDE-PROFESSIONAL-CONSULTATION  

AGENT    PROFESSIONAL 
BENEFICIARY   HUMAN  

 
2.  Definition:  Someone consults with a professional. 

Example:   I see my doctor regularly. 
Constraints:  The subject indicates a HUMAN and the direct object indicates a PROFESSIONAL.  

 Meaning:   PROVIDE-PROFESSIONAL-CONSULTATION  
AGENT    PROFESSIONAL 
BENEFICIARY   HUMAN 

 
3.  Definition:  Someone visually perceives something. 

Example:    I see a blue car. 
 Constraints:  The subject indicates an ANIMAL and the direct object indicates a PHYSICAL-OBJECT. 
 Meaning:   INVOLUNTARY-VISUAL-EVENT  

AGENT   ANIMAL 
THEME   PHYSICAL-OBJECT 



Without further contextual clues or background
knowledge, the input My grandmother saw her doctor
yesterday will be accommodated by senses 2 and 3; it
will not match sense 1 because there is no evidence in
this minimal context that grandma meets the PROFES-
SIONAL constraint on the subject. The LEIA’s rule of
thumb for selecting a default interpretation among
these is to prefer the interpretation with the tighter
semantic constraints on its arguments. In this case,
sense 2 wins since its subject/object constraints are
HUMAN/PROFESSIONAL versus sense 3’s broader con-
straints ANIMAL/PHYSICAL-OBJECT. This rule of thumb is
inspired by, and aligns with, human intuitions about
the default interpretation of this sentence. 

However, this rule of thumb only applies if all
properties of the context align with basic ontological
expectations. This is not the case in My grandmother
saw her doctor at the beach because the beach is not a
typical location for a professional consultation —
information that is available in the ontology. Based
on this, the agent must reject the narrower interpre-
tation and opt for the broader one, INVOLUNTARY-VISU-
AL-EVENT, which violates no ontological expectations.
As for the context in which lawyer-grandma consults
her doctor — that requires a type of dynamic analy-
sis of saliency that is on agenda to be modeled. 

Learning New Words and Concepts 
Language understanding often results in learning. A
straightforward type of learning involves learning
new facts about already-known types of objects and
events. For example, if a LEIA knows that people can
get the flu, and it knows various ways of expressing
“getting the flu” in English, then it can readily learn
the fact that John got the flu yesterday. More compli-
cated is learning about new kinds of objects and
events along with the words and phrases used to
describe them. In the Maryland Virtual Patient (MVP)
clinician training application mentioned earlier,
LEIAs playing the role of virtual patients carried out
such learning in dialogues with human users. 

Consider figure 5, which depicts an example
extracted from the middle of a system run at a point
when the user, playing the role of clinician, has
enough information about the virtual patient to sus-
pect an esophageal disease. He recommends that the
patient agree to have a diagnostic procedure called
an EGD. In the excerpt, the utterances themselves
are presented in semibold font. The italics indicate
traces of system functioning, presented in human-
readable form for demonstration purposes (the
agent “thinks” in the ontological metalanguage, cer-
tainly not in English!). 

When the virtual patient receives each of the doc-
tor’s dialogue turns as input, it analyzes it, generating
an ontologically-grounded text meaning representa-
tion of the type described earlier. This not only sup-
ports the learning of ontology and lexicon, it also
feeds into the agent’s decision function about

whether or not to agree to the procedure. This partic-
ular virtual patient has character traits that block it
from agreeing to any advice without having sufficient
information to make an informed decision (for more
on our modeling of character traits, see McShane
2014). This virtual patient is particularly concerned
about the risk and pain of the recommended proce-
dure and asks about them. It knows that procedures
can have RISK and PAIN because all MEDICAL-PROCEDUREs
in its ontology inherit these properties. Only when
satisfied with the levels of risk and pain does the
patient agree to the procedure. In short, the LEIA’s
learning of lexicon and ontology — which is an
essential part of its language understanding capabili-
ties — is both driven by and contributes to its rea-
soning about action. 

Resolving Ellipsis and 
Interpreting Fragments 
Natural language is highly elliptical and would be
gruelingly longwinded otherwise. Some types of ellip-
sis, such the ellipsis of verb phrases (example 3) are
found in all language genres, whereas other types,
such as fragmentary rejoinders (example 4), are par-
ticularly common in dialogues.

(3) Aid workers in war-ravaged Kabul were stunned
when a toddler from a poor family offered to teach illit-
erate women to read and write — and then promptly
proved he could [e]. (Graff and Cieri 2003)11

(4) “Everybody has to help clean up.” “Not me.”

No matter the type of ellipsis, both stages of its pro-
cessing — detecting the gap and reconstructing its
meaning — can be quite difficult. One of our methods
for treating ellipsis in the near- to midterm is teaching
LEIAs to independently detect which instances they
think they can treat with high confidence and focus
their resources on those.12 As for the residual cases,
agents can react using their usual repertoire of moves:
ask a human for clarification, wait and see if upcom-
ing utterances make things clear, and so on. Although
there are many types of elliptical and fragmentary
utterances, three will be sufficient for illustration: verb
phrase ellipsis, fragments in question-answer pairs,
and stand-alone fragments. 

Verb phrase ellipsis is the nonexpression of a verb
phrase whose meaning can be reconstructed from the
context. For example, the elided verb phrase in exam-
ple 5 means be in the kitchen.

(5) “We’re celebrating the fact that we’re living in a
time where, when we want to be in the kitchen, we can
[e],” says Tamara Cohen, Ma’yan program director.
(Graff and Cieri 2003)

Our verb phrase ellipsis module (McShane and
Babkin 2016a) uses lexical and syntactic heuristics to
select which contexts it knows how to treat, and it
identifies the antecedent for those cases. Compare
example 5, which the system can treat, with example
6, which it cannot. 

(6) The former Massachusetts governor called on Unit-
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ed Nations Secretary General Ban Ki-moon to revoke
Ahmadinejad’s invitation to the assembly and warned
Washington should reconsider support for the world
body if he did not [e] (Graff and Cieri 2003).

Both contexts are complex enough to offer multiple
candidate antecedents for the ellipsis: in example 5
the elided verb phrase could be headed by celebrate,
live, want or be; and in example 6 it could be headed
by call on, revoke, warn or reconsider. However,
whereas example 5 can be successfully simplified
using automatic syntactic tree trimming procedures,
example 6 cannot. Specifically, when processing
example 5, the system can leverage a pruning func-
tion that crosses out the material prior to the first
comma, leaving a much simpler context from which
to select the antecedent. Since such generic text sim-
plification procedures are not applicable to example
6, the context remains complex and ambiguous.
Once the string-level antecedent in example 5 has
been identified, its semantic analysis is incorporated
into the overall text meaning representation. This
involves not only concept selection but also the
determination of whether there is a type-coreference
or instance-coreference relationship between the
antecedent and the elided category.

Another type of ellipsis is characterized by frag-
ments occurring in typical dialogue strategies, such as

question-answer pairs. As described in McShane,
Nirenburg, and Beale (2005), the text meaning repre-
sentation of a question (How much ice cream do you eat
every week?) includes the expectation that its answer
will follow (A half gallon). So, when the question-
answer pair occurs in sequence — which, however, is
far from always the case in real language use — incor-
porating the meaning of the fragment into the mean-
ing of the overall context is straightforward. 

Although the aforementioned strategies are largely
domain-independent, they are best supplemented by
domain-sensitive ones, when available. For example,
imagine that a surgeon, assisted by a LEIA robot, yells
to the robot, “Scalpel!” We know that the surgeon
wants to be handed a scalpel, but how do we prepare
the robot to understand that? On the one hand, we
could write a rule saying that “Scalpel!” always means
“Hand me a scalpel”; but unless the robot has an
extremely narrow repertoire of capabilities, this type
of listing will be inefficient and ultimately unsatis-
factory. Zooming out one level of abstraction, we
could generalize that “PHYSICAL-OBJECT!” always means
“Hand me a PHYSICAL-OBJECT.” This will often work —
except when it doesn’t: Nuts! Lawyers! My foot! Con-
straining the applicable objects still further to IMPLE-
MENTs would help — and, in fact, it might be entirely
sufficient for our robot. However, a more fundamen-
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Figure 5. Example Maryland Virtual Patient Clinician Training Application System Run.

 

MD:  I suggest having an EGD, which is a diagnostic procedure. 

VP:  I do not know the word “EGD”. 
I record the concept EGD as a child of DIAGNOSTIC-PROCEDURE in my ontology. 
I record the word “EGD” as a noun in my lexicon, mapped to the concept EGD.  
I don’t know enough about the properties of EGD to agree. 
I need to ask questions about RISK and PAIN. 

  How risky is it? 

MD:  It’s not risky at all. 

VP:  I add the property-value pair “RISK: 0” to the ontological specification of EGD. 
Is it painful? 

MD:  It’s only a little uncomfortable. 

VP:  I add the property-value pair “PAIN: .1” to the ontological specification of EGD. 
I can tolerate that amount of risk and pain. 
OK, I’ll agree to that. 

 
 



tal solution would be for the agent to figure out what
was needed through reasoning about its collabora-
tor’s plans and goals, in conjunction with its under-
standing of its own capabilities. If all the robot can
do is hand objects to humans, then there is no lan-
guage analysis problem: as long as the robot can iden-
tify, reach, and lift the object, it knows what to do.
But if, by contrast, the robot can do many things with
the same set of objects — hand them to someone,
hold them steady in the given position, turn them to
the right, replace them to their storage area — con-
textual cues have to be incorporated into the lan-
guage understanding process. There is nothing par-
ticularly difficult about specifying these cues, but it
cannot be done generically, it must be done for each
robot (or unembodied intelligent agent) functioning
in each context of interest. To reiterate a point made
earlier, in order to function usefully in an application,
intelligent agents need knowledge about their
domain, their own capabilities, their collaborators’
needs, and so on, and this knowledge can efficiently
be reused to support language understanding. 

Interpreting Utterances Incrementally
NLP has most often been approached by subjecting
full sentences to a pipeline of processing: preprocess-
ing followed by syntactic analysis and whichever
aspects of semantic and pragmatic analysis might be
undertaken (often none). By contrast, we have recent-
ly begun exploring incremental NLU, defined as
building up meaning representations using whatever
heuristic evidence is available as early as possible. This
not only more closely emulates what people do,13 it
should allow for time-sensitive actions by the agent,
such as interrupting for clarification and starting to
take action before the speaker has finished a long sen-
tence: By the time one says “Grab the fire extinguish-
er” the robot should already be on its way, no matter
what subsequent instructions might follow.

Our approach to incrementality is inspired by what
we think people do but with a large dose of system-
building practicality. For example, although syntactic
analysis is run on each new word of input, semantic
analysis is run only if the last word is a noun or a verb
— that is, a semantically heavy element. So the LEIA
will attempt semantic analysis at each of the points
indicated by an asterisk in the following input: The
green machine * makes * great coffee * in no time.* This
strategy operationalizes our opinion that there is no
added value in forcing the agent to attempt to seman-
tically analyze The or The green in isolation, no matter
what people may or may not do with such fragments. 

As an example of incremental analysis, consider
the following inputs:

(7a) The truck delivered the soil and then it
(7b) The truck delivered the soil and then it took
(7c) The truck delivered the soil and then it took the
lumber away.

Even given only the string in input 7a, the LEIA can

hypothesize that it most likely corefers with the truck.
The main heuristics it uses to reach this judgment are
the truck and it have matching features (inanimate,
singular); they are the subjects of sequential clauses;
those clauses are joined by the conjunction-adverb
pair and then. Our experimentation has shown that
this configuration highly suggests that the truck and it
are coreferential (for details of this and other predic-
tive coreference configurations, see McShane and
Babkin [2016b]). Moving to example 7b, once the
agent has hypothesized that it refers to the truck, it
can penalize all senses of take whose subject must be
either pleonastic (that is, nonreferential, as in It takes
time to learn things well) or refer to a HUMAN. This aids
in word-sense disambiguation because take is a light
verb that has dozens of senses. Of course, subsequent
words of input can always alter the agent’s current
analysis: for example, 7a could have continued as “…
and then it started to rain.” In this case, the agent
would have to overturn its early coreference link
between it and the truck based on the new evidence. 

A major reasoning challenge in this approach
involves weighing competing preferences posted by
different analysis modules. Consider in this regard
example 8: 

(8) The boy’s father talked at length with the surgeon
and then he proceeded to operate. 

Readers might find this sentence rather awkward
since, like our LEIAs, they might intuitively expect
“and then he” to signal coreference with the preced-
ing clause’s subject and then have to switch their
interpretation midstream. In fact, an editor would
likely improve this sentence by avoiding the subopti-
mal “he” in favor of something less ambiguous, like
“the latter.” However, faced with exactly this sen-
tence — since it could realistically be pronounced by
a person in regular discourse — the LEIA must over-
ride its syntactically grounded preference for the
father/he coreference by prioritizing the semantic
preference for the AGENT of SURGERY to be a SURGEON.

Managing competing heuristic evidence is chal-
lenging. The LEIA must not only estimate confidence
in each of its individual calculations (each word
sense, each coreference decision), it must weigh that
evidence to arrive at a single overall analysis. Our
agent’s advantage in cutting through the complexity
is that its language understanding takes place within
a task-oriented context that provides it with expecta-
tions about what the interlocutor is likely to say,
want, and need. Those expectations can guide deci-
sion-making in what might otherwise be an infeasible
amount of residual ambiguity.

Reasoning About the Results 
of Language Understanding

We have just considered a handful of language under-
standing challenges and how LEIAs address them. In
passing, we have mentioned some key decision
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points involving reasoning about the results of lan-
guage understanding. Now let us consider the latter
more fundamentally. 

Learning Words and Concepts
Every word or phrase an agent encounters in an input
can have various statuses: it can be a known
word/phrase used in a known sense; a known
word/phrase used in a canonical sense that simply
hasn’t been recorded in the lexicon yet; a known
word/phrase used in a noncanonical sense — for
example, as a metonymy; or an unknown
word/phrase. In all but the first case, the agent faces
incongruity resulting in an incomplete meaning rep-
resentation, and it must decide what to do next. Let
us concentrate on the case of completely unknown
words, with the understanding that unknown senses
of known words — and all corresponding eventuali-
ties for phrases — can be handled similarly.

If learning words of a particular ontological type is
among the agent’s active goals, then it will go ahead
and learn the new word — as explained earlier using
the example of EGD. If, by contrast, the given type of
word does not have special priority in the applica-
tion, then the agent can attempt some straightfor-
ward inferencing techniques to glean at least a coarse-
grained meaning. For example, given an input like
The jiffers took a bath, the agent can infer that jiffers is
probably some sort of HUMAN or, at a minimum, some
ANIMAL, based on the combination of lexical knowl-
edge (take a bath is a phrase that points to the concept
BATHE) and ontological constraints (the AGENT of BATHE

is, by default, HUMAN, but its basic semantic constraint
is ANIMAL) (Nirenburg and McShane 2016b; McShane
et al. 2017). If this example seems farfetched, think
about how many canonical and slang terms one can
use for humans at all stages of life — from schoolchild
to oldster to dude to punk — any of which could be
missing from the agent’s lexicon at a given time. The
results of this on-the-fly learning can be used imme-
diately and can then either be forgotten, be recorded
permanently in the knowledge base, or be passed on
for human vetting. If simpler word-learning
approaches do not apply, then the agent can leverage
the big guns of learning by reading: it can collect con-
texts that use the word from a large corpus, classify
those contexts into hypothesized senses of the word,
and then attempt to determine the meaning of the
word in each of those classes of examples (ibid).
Although this kind of learning is the Holy Grail of
knowledge-based systems, it does not, as yet, yield
high-quality results. Other options for handling
unknown words include asking a human to define
them, ignoring them, or waiting to see if further con-
text makes their meaning clear. 

Seeking Indirect Speech Act Interpretations.
Many utterances can have both direct and indirect
meanings. To take a typical example, I’m cold directly

reports my feeling of chilliness but it can indirectly
imply anything from “Close the window behind you”
to “Do something about it, I don’t care what” to
“Although I know you can’t do anything to change
this state of affairs, please say something sympathet-
ic or encouraging.” Since indirect speech acts are
most often requests or commands expressed as inter-
rogative or declarative statements (Would you mind
helping me fold the tablecloth?; I’ll never finish on time by
myself; The lawn needs mowing), every declarative or
interrogative statement the agent receives could, in
principle, be a cloaked indirect speech act. This could
send the agent on a never-ending wild goose chase
for indirect-speech-act interpretations: 

Ann: “I love chocolate!” 
LEIA (thinking): What does she want me to do about
that?

The question is, how to constrain this chase? One
way is to record in the lexicon a large inventory of
canonical patterns for expressing indirect speech acts.
For example, among the dozens of frequent para-
phrases for asking someone to do X are I’d like to ask
you to do X, Would you mind doing X?, It would be (real-
ly) great if you’d do X, and so on. Since formulas like
these are known by people, we must make them
known to our agents as well, thus taking care of a
large number of indirect speech situations. A more
domain-specific way of detecting indirect speech acts
relies on domain modeling, as described earlier on
the example of a robotic helper for a surgeon. As long
as the agent understands the inventory of actions it
can take, it can attempt to align any speech act with
one of those actions. However, as mentioned earlier,
seeking indirect speech act interpretations too rigor-
ously will clearly be counterproductive: after all,
many utterances are simply for information, with the
interlocutor not expected to respond at all. 

Managing Residual 
Ambiguity or Incongruity 
In many cases, the agent will either not be able to dis-
ambiguate some aspect of input (residual ambiguity)
or it will have no high-confidence analyses available
(incongruity) (for discussion of both of these, see
Nirenburg and McShane 2016b). The question then
becomes, Does this matter? That depends on the
application. On the lenient end of the spectrum is the
Senior Companion system (Wilks et al. 2011), which
seeks to keep human users engaged in conversation
while reminiscing over photographs. This brilliantly
selected domain is at once forgiving of near-term lim-
itations in language processing and AI, and open to
iterative enhancements over time. By contrast, a lan-
guage-endowed military robot capable of carrying out
irreversible actions offers no tolerance for less than
full and confident language understanding as soon as
it is deployed.14
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Pursuing Implicatures
A longstanding and largely unsolvable philosophical
and practical problem is, Where does language under-
standing end and general reasoning begin? Given a
dialogue exchange like (9), what should the text
meaning representation include?15

(9) A: Gerard is gluten-free.
B: But he eats pizza.

Clearly, there are two assertions: Gerard does not eat
food containing gluten and Gerard eats pizza. The “but”
signals a contrast between them. However, the spe-
cific implicatures of B’s statement, and the type of
contrast involved, depend upon such things as A’s
and B’s individual and shared knowledge, their atti-
tude toward Gerard, B’s intonation, and their goals in
having this conversation to begin with. For example,
does B know that gluten-free pizza exists? Is he saying
that has seen Gerard eat regular, gluten-containing
pizza? Is he confused by an apparent incongruity or
is he trying to discredit Gerard or speaker A? Making
all of these determinations depends not only on the
larger speech context, but also on the successful min-
dreading (that is, mental model ascription) of all par-
ticipants. 

Although we have, in fact, pursued mindreading in
OntoAgent (for example, McShane, Nirenburg, and
Jarrell 2013; ), describing those strategies goes beyond
the scope of this article. I mention the issue of impli-
catures only to underscore that, when we evaluate
agents for their ability to understand language, we
must be very clear about what we mean. I couldn’t
agree more with Ray Jackendoff’s opinion that we
cannot, as linguists, draw a tight circle around lin-
guistic meaning and expect all other aspects of mean-
ing to be taken care of by someone else. He writes: 

If linguists don’t do it [deal with the complexity of
world knowledge and how language connects with
perception], it isn’t as if psychologists are going to step
in and take care of it for us. At the moment, only lin-
guists (and to some extent philosophers) have any
grasp of the complexity of meaning; in all the other
disciplines, meaning is reduced at best to a toy system,
often lacking structure altogether. Naturally, it’s daunt-
ing to take on a problem of this size. But the potential
rewards are great: if anything in linguistics is the holy
grail, the key to human nature, this is it. (Jackendoff
2007, p. 257)

Although pursuing this level of understanding is both
correct and necessary, the practical down side is clear:
the higher the language understanding bar, the more
difficult it is to show results that will be positively
evaluated in the current climate, which so strongly
favors breadth over depth and immediate results over
long-term prospects. 

Conclusion
Much of this discussion has concentrated on ways in
which knowledge and reasoning can be leveraged for

language understanding. However, I have concluded
with an example in which basic language under-
standing serves as a springboard for reasoning about
things other than language, such as the knowledge,
opinions, and goals of one’s interlocutor. This type of
reasoning falls between the cracks of agent modeling
communities, equally far from raw perception as it is
from the flavors of reasoning pursued by formal
semanticists and logicians. The need for agents to
engage in this type of holistic modeling argues in
favor of integrated architectures like OntoAgent. 

Let us now briefly return the status of LEIA imple-
mentations, with details available in the cited refer-
ences. The two main implementations of the OS
approach to language understanding, called Onto -
Sem and OntoSem2, use the same inventory of
microtheories and knowledge bases, but whereas
OntoSem interpreted sentences on the whole,
OntoSem2 works incrementally (McShane, Niren-
burg, and Beale 2016; McShane and Nirenburg 2016).
As expected for a research and development effort,
more functionalities have been specified than have
been implemented, and more have been implement-
ed than have been formally evaluated. Formal evalu-
ations have so far targeted word sense disambiguation
(McShane, Nirenburg, and Beale 2016), multiword
expression processing (McShane, Nirenburg, and
Beale 2015), the processing of difficult referring
expressions (McShane and Babkin 2016b), and the
detection and resolution of VP ellipsis (McShane and
Babkin 2016a). Algorithms that have been imple-
mented16 but have not been formally evaluated
address nominal compounding (McShane, Beale, and
Babkin 2014) and fragment interpretation (McShane,
Nirenburg, and Beale 2005). We are currently prepar-
ing for the first formal evaluation of OntoSem2,
which has two foci: threading word sense disam-
biguation with reference resolution (McShane 2009;
McShane and Nirenburg 2013; McShane, Beale, and
Nirenburg 2010), and determining the extent to
which local dependencies can and cannot resolve lex-
ical ambiguity. The virtual patients in the MVP sys-
tem (cited earlier) were able to learn new words, con-
cepts, and properties of concepts, and they could
interpret various types of indirect and elliptical utter-
ances. Approaches to incorporating mindreading and
reasoning with language understanding are detailed
in the papers by McShane et al. (2012); McShane,
Nirenburg, and Jarrell (2013); McShane (2014);
McShane and Nirenburg (2015); and Nirenburg and
McShane (2015). Our group’s near-term agenda
includes endowing a furniture-building robot with
language understanding capabilities (Roncone, Man-
gin, and Scassellati 2017) and configuring a dialogue
agent that is not only able to compute meaning incre-
mentally (albeit with human-like levels of residual
ambiguity) but also to recover from unexpected input
using expectation-driven strategies that leverage
domain knowledge and mindreading of the inter-
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locutor (Nirenburg and McShane 2016b; McShane,
Blissett, and Nirenburg 2017). 

How long will it take for LEIA applications to come
to fruition? About the same amount of time as it takes
to learn to play the violin: anywhere from a year to a
lifetime, depending on time spent, resources avail-
able, and target quality and coverage.
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Notes
1. Church (2011, p. 18) writes: “[John] Pierce objects to
attempts to sell science as something other than it is (for
example, applications), as well as attempts to misrepresent
progress with misleading demos and/or mindless metrics
(such as the kinds of evaluations that are routinely per-
formed today).” Evaluating NLU systems using the metrics
imposed by the NLP community is not only impossible, it
falls squarely into the category of mindless metrics. 

2. Cited from en.wikipedia.org/wiki/Detroit on December
10, 2016.

3. Some annotations have been removed for concise pres-
entation. 

4. It does, however, follow a typical NLP practice of isolating
a particular phenomenon, such as reference resolution or
word-sense disambiguation, annotating a corpus for a sub-
set of its realizations, then staging a competition among
machine-learning systems trained using that corpus. The
utility of these task-specific competitions, whose results, to
my knowledge, are rarely incorporated into application sys-
tems, remains to be seen.

5. The reasoning strategies presented here are selective, not
comprehensive. For discussion of yet another reasoning
strategy — reasoning by analogy — see Forbus and Hinrichs
(2017).

6. The OS ontology is language independent. The names of
concepts look like English words only for the benefit of the
humans who acquire the knowledge resources and test and
evaluate the system. For the system’s purposes, concept
names could as easily be randomly selected sequences of
characters. 

7. There have been two main implementations of the theo-
ry of OS. Implementations prior to 2015 carried out sen-
tence-level analysis, meaning that they considered whole
sentences at once, an approach typical for syntactic parsers.
By contrast, the implementation under development since
2015 pursues incremental (word-by-word) analysis, which
more closely emulates what people do. See McShane and
Nirenburg (2016) for an in-depth juxtaposition of these
implementations. 

8.  We currently use select outputs from the Stanford
CoreNLP tool set (Manning et al. 2014).

9. A more complete lexicon would include many more

phrasal senses, such as eat one’s hat, eat one’s heart out, eat
someone alive, and so on.

10. Yes, a lion can eat a human … and a car can be hot pink,
and some dogs have no tails — none of which is covered by
our current ontology, which is intended to provide agents
with knowledge of how the world typically works. 

11. [e] indicates an empty category — that is, ellipsis. The
italics indicate the antecedent.

12. Although this might seem like the obvious approach, it
is actually not typical in mainstream NLP, where entities of
interest in a corpus — so-called markables — tend to be
selected manually prior to system training and evaluation
(for the example of coreference resolution, see Hirschman
and Chinchor [1997]).

13. See Tanenhaus et al. (1995) for a discussion of ground-
ing linguistic references in the real world as early as possi-
ble.

14.  Of course, full language understanding far from
exhausts such a robot’s responsibilities, as discussed by
Matthias Scheutz (Scheutz 2017) with respect to ethics.

15.  This example arose in conversation with Selmer
Bringsjord about the division of labor between language
processing and general reasoning. 

16.  In some cases iplementations are partial. Most
microtheories include aspects ranging from simple to
extremely complex. Consider the example of nominal com-
pounds: in the simplest case, they are recorded explicitly in
the lexicon; in the most complex case, the agent doesn’t
know the meaning of either of the words; and there are
many eventualities in between. In developing microtheo-
ries, we attempt to flesh out the full problem space even if
we cannot immediately achieve high-quality results for the
more difficult component phenomena. 
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