
Four Kinds of Learning in One Agent-
Oriented Environment 

Sergei NIRENBURGa , Marjorie McSHANE 
a,1, Stephen BEALE 

a , Jesse ENGLISHa, 
Roberta CATIZONEb 

a
 University of Maryland Baltimore County 

 ITE 325, 1000 Hilltop Circle 
   Baltimore, MD 21250 

b
 Onyx Consulting 

{sergei, marge, sbeale, english1}@umbc.edu 
roberta@dcs.shef.ac.uk 

 

Abstract. This paper briefly describes four kinds of learning carried out by 
intelligent agents in a computational environment facilitating joint activities of 
people and software agents. The types of learning and the applications we draw 
examples from are: learning by being told and learning by experience, as 
illustrated through a virtual patient application; learning by reasoning, as 
illustrated through a clinician’s advisor application; and learning by reading, as 
illustrated by an ontology enhancement application. The agents carrying out these 
types of learning are modeled using cognitive modeling strategies that show 
marked parallels with how humans seem to learn.  
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Introduction 

In this paper we present four kinds of human-like learning carried out by cognitively 
modeled agents in an environment that can support various applications. The paper is 
not technical; rather, it presents a new, aggregated view of learning in the OntoAgent 
environment and will serve as an introduction to the systems to be demonstrated at the 
conference. Interested readers can find technical descriptions of each type of learning 
in referenced papers.  
     The core capabilities of the agents in this environment include the following: they 
are designed to operate in a hybrid network of human and artificial agents; they 
emulate human information processing capabilities by modeling conscious perception 
and action, which includes reasoning and decision making; they can communicate with 
people using natural language; they can incorporate a physiological model, making 
them what we call “double agents” with simulated bodies as well as simulated minds; 
they can be endowed with personality traits, preferences and psychological states that 
affect their perceived or subconscious preferences in decision-making; their means of 
perception include language understanding and interoception, which is the experiencing 
of sensations from one’s body; their underlying principles, knowledge resources and 



processors are broad-coverage rather than geared at a particular application, which 
makes them – after a modicum of inevitable knowledge base refinement – portable to a 
variety of domains and application configurations; and the perception and action 
algorithms used by the agents are supported by and, in turn, augment the agents’ 
memory of event, state and object instances to complement its ontological knowledge 
of event, state and object types.  

What makes modeling such multi-faceted agents feasible is that all aspects of 
agent functioning are supported by the same ontologically-grounded knowledge 
substrate encoded in a single metalanguage [1]. That is, no matter how information 
enters an agent’s consciousness – be it through dialog, reading texts, perceiving its own 
bodily signals, etc. – it must be automatically converted into the unambiguous 
metalanguage used for reasoning. Let us take, as an example, the case of language 
processing. If our agent receives the dialog input You have achalasia, it uses its 
knowledge of language, lexicon and ontology to convert that string into the semantic 
interpretation ACHALASIA-1 (EXPERIENCER HUMAN-1). (This is actually a shorthand 
version of the representation generated and used by the system.) The words in small 
caps are ontological concepts and the appended numbers indicate instances of those 
concepts. The instance HUMAN-1 would be coreferred in the agent’s memory with itself.  

As a testbed for the development of our extended cognitive architecture 
(“extended” because cognitive architectures typically do not include physiological 
simulation), we have been modeling agents in the medical domain. Our first application, 
Maryland Virtual Patient [1-3], is an environment for training medical personnel in 
patient management – diagnostics, treatment and care over time. Our second 
application, built on the same knowledge and processing substrate, is a CLinician’s 
ADdvisor (CLAD), which is intended to assist practicing clinicians by providing 
advice and thus reducing their cognitive load. In parallel with these applications, we 
have been working on teaching our agents to learn ontology and lexicon by reading. 
This capability can be used at runtime to recover from so-called unexpected input and 
over a longer period of time to enhance the resources central to all agent 
communication.  

To illustrate different types of agent learning, we select just one agent in one 
application for each type of learning. However, it must be emphasized that we are 
developing agent capabilities which are then applied to all agents in the network for 
which they are applicable.  

It must be emphasized from the outset that the learning carried out in the 
OntoAgent environment does not readily lend itself to comparison with traditional 
machine learning paradigms because (a) it is not centrally statistical, (b) it relies on 
understanding the meaning of text and agent experiences and (c) the learned material is 
integrated into a multi-dimensional and ever-growing agent memory in which  
interpreted information is recorded in a metalanguage that supports automatic 
reasoning. Unfortunately, space does not permit a detailed comparison with traditional 
machine learning paradigms. 

1. Learning by Being Told in Maryland Virtual Patient 

Maryland Virtual Patient (MVP) is a cognitive simulation and training system whose 
goal is to provide medical practitioners with the opportunity to develop clinical 
decision-making skills by managing many highly differentiated artificial intelligent 



agents playing the role of virtual patients (VPs). These VPs can suffer from various 
diseases and combinations of diseases, and are capable of realistic physiological and 
cognitive responses even to unexpected actions on the part of the user. The system 
seeks to offer a breadth of experience not attainable in a live clinical setting over a 
corresponding period of time, and a depth of experience that is not currently available 
in interactive VP training systems. In short, trainees can learn by trial and error using a 
large number of patients that present with clinically relevant variations of each disease.  

MVP is configured as a network of human and artificial agents. The human agent, 
who is typically a medical trainee seeking to improve his or her cognitive decision 
making skills, plays the role of the attending physician. The core artificial agent, the 
VP, is a knowledge-based model and simulation of a person suffering from one or more 
diseases. The VP is a “double agent” in that it models and simulates both the 
physiological and the cognitive functionality of a human. Physiologically, it undergoes 
both normal and pathological processes and responds realistically both to expected and 
to unexpected (e.g., by user error) internal and external stimuli. Cognitively, it 
experiences symptoms, has lifestyle preferences (a model of character traits), has 
dynamic memory and learning capabilities, has the ability to reason in a context-
sensitive way, and can communicate with the human user about its personal history, 
symptoms and preferences for treatment. Other intelligent agents in the network 
include medical specialists and technicians and a tutor. Communication between the 
user and the intelligent agents is carried out in unrestricted English. 

Two of the important cognitive features of virtual patients in MVP is their ability 
to learn and their ability to make decisions that reflect their personal preferences, 
character traits, etc. In fact, learning is often a prerequisite to making a decision: after 
all, even virtual patients should not make uninformed decisions. Table 1 shows a brief 
dialog between a virtual patient (VP) and the human user/doctor (D) that features the 
learning of ontology and lexicon in preparation for decision-making. We present the 
dialog in tabular form and not in the implemented, fully functional interface for reasons 
of space.  

 
Table 1. A dialog in MVP and the ontological and lexical knowledge learned by the VP. 
Dialog Ontology learned Lexicon learned 
D: You have achalasia. The concept ACHALASIA is learned and 

made a child of DISEASE. 
The noun “achalasia” is learned 
and mapped to the concept 
ACHALASIA. 

VP: Is it treatable?  
D: Yes. 

The property TREATABLE in the 
ACHALASIA frame has its value set to 
‘yes’. 

 

D: I think you should have a 
Heller myotomy. 

The concept HELLER-MYOTOMY is 
learned and made a child of MEDICAL-
PROCEDURE.  Its property TREATMENT-
OPTION-FOR receives the filler HELLER-
MYOTOMY. 

The noun “Heller myotomy” is 
learned and mapped to the 
concept HELLER-MYOTOMY. 

VP: What is that? 
D: It is a type of esophageal 
surgery.   

The concept HELLER-MYOTOMY is 
moved in the ontology tree: it is made 
a child of SURGICAL-PROCEDURE. 
Also, the THEME of HELLER-MYOTOMY 
is specified as ESOPHAGUS. 

 

VP: Are there any other 
options? 
D: Yes, you could have a 
pneumatic dilation instead…  

The concept PNEUMATIC-DILATION is 
learned and made a child of MEDICAL-
PROCEDURE. 

The noun “pneumatic dilation” is 
learned and mapped to the 
concept PNEUMATIC-DILATION. 

D: (cont) which is an PNEUMATIC-DILATION is moved from  



endoscopic procedure. being a child of MEDICAL-PROCEDURE 
to being a child of ENDOSCOPY. 

VP: Does it hurt? 
D: Not much.  

The value of the property PAIN-LEVEL 
in PNEUMATIC-DILATION is set to  .2 
(on a scale of 0-1).  

 

 
When the VP processes each of the doctor’s utterances, it automatically creates text 
meaning representations that it then uses for purposes of reasoning and learning. Recall 
that we already saw the text meaning representation of the first sentence: ACHALASIA-1 
(EXPERIENCER HUMAN-1). Semantically-oriented text analysis, of course, involves 
extensive reasoning about language and the world, and learning ontology and lexicon 
involves additional reasoning. For example, how does the VP know to make 
ACHALASIA a child of DISEASE? It combines its lexical knowledge of the possible 
meanings of the word have (one of which expects a disease as its direct object) with 
knowledge of the speech context (the VP is in the doctor’s office) to hypothesize the 
meaning of the unknown word. A similar type of reasoning is used to suggest to the VP 
that a Heller myotomy is some sort of medical procedure. Our short dialog also shows 
two examples of belief revision: when the VP learns more about the nature of the 
procedures HELLER-MYOTOMY and PNEUMATIC-DILATION, it selects more specific 
parents for them, thereby permitting the inheritance of more specific property values.  

2. Learning by Experience in Maryland Virtual Patient 

Virtual patients in MVP have a simulated life that is sufficiently rich to support the 
needs of the teaching application. For example, they make medically relevant lifestyle 
decisions (whether or not to smoke, take their medication, etc.), they go to the doctor, 
converse and negotiate with him or her, have procedures carried out on them, and so on. 
They also experience symptoms of their disease through the process of interoception, 
which is the perception of the body’s signals as perceived by the mind.  

Many aspects of a VP’s simulated life lead to learning, defined as populating the 
VP’s memory with new facts about types and instances of objects and events in the 
world. For example, when the VP experiences symptoms over time, it remembers them  
as new and changing features of itself; when it has a test carried out, it has a certain 
perception about the test that might or might not correlate with what that doctor said to 
expect; when it takes medication or has a procedure carried out, it may or may not feel 
better as a result, thus learning that the given intervention was or was not effective; and 
so on. All of the VP’s new experiences are recorded in memory using the same 
ontological metalanguage used throughout the system; as such, these memories are 
available as input to the same reasoners that work on information learned in all of the 
other ways presented in this paper.  

3. Learning by Reasoning in CLinician’s ADvisor 

CLAD, a CLinician’s ADvisor, is a system intended to decrease the cognitive load of 
clinicians caused by the vast amount of information available, and to improve overall 
patient outcome through providing high-value decision-making assistance. It is 
intended to support the work of a live clinician managing a live patient. It will assist 



clinicians by providing advice (along with its justification), answering questions, 
providing prognoses, carrying out administrative tasks (e.g., finding out if a given 
procedure is covered by the patient’s insurance company), and so on.  

CLAD is endowed with the same expert disease model that drives the 
physiological simulation in MVP. This means that it knows the salient features of each 
disease, the different courses a particular patient’s disease can follow, the typical range 
of time frames for each stage of a disease (as conceptually delineated in the model), the 
different interventions that can be used and their range of affects on different patients, 
an so on. In short, it knows the theme and variations of diseases.  

One of CLAD’s jobs, paralleling that of a clinician, is to attempt to determine 
which “profile” a patient matches in order to select the best course of treatment. For 
example, one patient might be experiencing very slow disease progression and can be 
monitored at long intervals, while another is experiencing very fast disease progression 
and must be treated at once; one patient might have a history that puts him at risk for 
disease complications while another might have little likelihood for such 
complications; and so on. If CLAD knows nothing about a patient, it cannot know 
which profile he or she matches and can only reason in general terms, using population 
based statistics. However, as it learns more and more about the patient, through the 
information recorded in the patient chart, it can reason about the patient’s most likely 
profile. This belief revision permits CLAD to provide more individually catered advice 
over time. For example, assume that a patient presents to the doctor complaining of 
difficulty swallowing and chest pain. CLAD hypothesizes that the patient has the 
disease achalasia and advises an upper endoscopy and a barium swallow. The doctor 
orders these tests and the results suggest a very early stage of achalasia, but without 
sufficient evidence for a definitive diagnosis. The doctor has the patient come for a 
follow-up and another barium swallow 6 months later. The patient’s symptoms are 
about the same and the test results show only slight increase in relevant indicators. 
There is still insufficient evidence to posit a definitive diagnosis. Using its temporally 
sensitive disease model, CLAD concludes that the patient most likely has very slowly 
progressing achalasia (a revision from fully generalized achalasia) and no definitive 
diagnosis will be possible for 1.5 – 2 years. It suggests that the next follow-up be in 1.5 
years unless the patient experiences some marked increase in symptoms.  

4. Learning by Reading for Automatic Ontology and Lexicon Enhancement   

The OntoAgent environment requires high-quality lexical and ontological knowledge 
bases that to date have been compiled manually. Manual acquisition of resources, 
however, is expensive – so expensive that some (e.g., [4]) consider it infeasible. One 
way to both alleviate the cost and also permit the system to better recover from so-
called unexpected input during runtime processing is to prepare it to learn ontological 
concepts and lexical senses on the fly. The methodology we have been experimenting 
with is learning by reading [5, 6]. When our text processing agent encounters an 
unknown word, it behaves in a similar way as a person might: it uses the available 
properties of the word presented in the text to help it to guess what the word might 
mean. But rather than be limited to just the local context, it can search the Web for 
other contexts that use the word in an effort to learn other properties of it that will 
further constrain its meaning. Once it has compiled an inventory of property-value 
pairs, it matches them to existing concepts in the ontology in an attempt to find the 



most appropriate placement for it in the tree of inheritance. When the best placement 
has been found, the concept is provisionally added to the ontology (provisionally 
because it must be vetted by a person) and inherits fillers for all properties that were 
not explicitly defined during the machine learning process. In this way, a newly learned 
concept gets the fullest possible property-value profile, even though some of the values 
might be underspecified since they are inherited from the parent. Our work on learning 
by reading has not yet been incorporated into MVP or CLAD, though its incorporation 
and subsequent system-based testing is planned for the near future.  
 

5.  Closing Remarks 

This paper has provided an informal overview of several types of human-like learning 
carried out by intelligent agents in our environment. The goal was not to explain the 
details of how this is done (which can be found in referenced works) but, rather, to 
show what is learned and why. The overarching goal of our program of research and 
development is to create intelligent agents that fulfill the original, lofty vision of 
artificial intelligence, but we seek to do that along a schedule that permits intermediate 
results to be of utility in near-term applications.  
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