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Neurosymbolic approaches to artificial intelligence have so far been understood primarily
as “a method of reincorporating some of the structure and speed of symbolic reasoning into
the flexible representations provided by deep learning” [1, 2, 3]. Our approach is the inverse of
the above: we use flexible representations, big data orientation and analogical reasoning of ML
(and older-style data analytics) to a) support knowledge-based processing (for example, taking
care of pre-semantic stages of deep language understanding []; and b) to support efforts on
overcoming the notorious “AI knowledge bottleneck.” In this abstract we (very) briefly describe
our team’s past, current and planned future work on the above topics.

We develop intelligent agent systems (language-endowed intelligent agents, LEIAs []) that
include both ML-based and knowledge-based processing modules (see Figure 1). LEIAs are
intended to serve as members of human-AI teams in critical applications where humans must
fully trust the AI agents’ conclusions and recommendations. Knowledge acquisition is a central
concern in LEIA development [].

While originally the efforts concentrated on analytical support and ergonomics of manual
acquisition, the availability of the LEIA system infrastructure offered a novel opportunity –
knowledge acquisition as a side effect of the system’s regular operation (“opportunistic learning”).
This capability required several prerequisites:

• an NL understanding system that takes text as input and interprets it in terms of the
underlying ontological model of the world, language and human behavior (in other words,
extracts and represents the meaning of language inputs) [];

• an image interpretation system that uses same underlying knowledge base to interprets
results of image recognition [];

• a conceptual learning module that extracts the information to be learned from the outputs
of the above interpretation systems and updates the LEIA’s knowledge infrastructure –
the ontology, the lexicon, the opticon and the episodic memory of concept exemplars [].
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Figure 1: Integration of routine operation and two kinds of conceptual learning by LEIAs with DL
model training involving LEIA knowledge resources. LEIAs are already hybrid systems, as perception
recognition and much of rendering tasks are implemented using ML-based methods.

A LEIA with the above capabilities is first bootstrapped by a “seed” ontology, lexicon and
opticon – and uses these resources to continuously learn new content. At present, we bootstrap
the system with an ontology of ∼160K RDF triples, an English lexicon of ∼30K word senses
and a small opticon [4].

At present, learning-through-NL understanding still requires large amounts of expensive
human time. In order to gradually alleviate this inefficiency, we have embarked on a program
of work on substituting generative DL models for humans in the dialog. These models are
capable of generating coherent text on multiple topics. While this breakthrough in generative
AI has potential for knowledge acquisition, current DL models may still generate incomplete
or fallacious outputs. Until “autonomous” LEIA-DL model dialog has been demonstrated to
be viable, learning through LEIA-human dialog will remain a part of the overall learning
environment (Figure 1), but the expectation is that in the suggested configuration humans will
have less to do.

Learning is triggered if LEIA inference fails — for instance if a new entity type is encountered,
as we have previously demonstrated in [5]. Once this happens, the system generates a request
to a DL model to generate text and images as appropriate for the particular prompt. Model-
generated text and images are interpreted as a TMR that is processed by the conceptual learning
module to extract the precise content that will be used to augment the LEIA’s ontology, lexicon
or opticon. Images (in text or other context) are used to acquire the opticon. The human is
"lurking" in the background to resolve incongruities, but is not asked to actively provide inputs.

The above interaction between a DL model and a LEIA can take a push-me-pull-you turn:
the DL model output supports automation of ontology, lexicon and opticon acquisition, and the
content of LEIA knowledge resources in turn augments the training datasets of DL models.

Retraining the models with LEIAs’ knowledge resources will enhance success of the LEIA
language interpreter in at least a couple of ways: model outputs can be fomulated using only
items in the LEIA lexicon; and model outputs can be at least partially formulated in the LEIAs’
ontological metalanguage.

We present both a methodological position and a challenge to AI researchers interested in
both ML and knowledge-based approaches. Therefore the final paper (which will describe
the above material in detail) can be presented as either a challenge or a position paper (it has



features of both).
Nikhil’s contributions on using VoxML [6, 7, 8, 9]
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