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What is a Cognitive
> * Architecture?

Afcognitive architecture is a broadly-scoped,
domain-generic computational cognitive
model; capturing the essential structure and
PIOGESS O the mind, to be used for a broad,
multiple=level, multiple-domain analysis of
OENAVIOF.

SEESun (2004, Philosophical Psychology)
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] What is a Cognitive
Architecture?

sSArchitecture of a building: overall design and overall
framework, as well as roofs, foundations, walls,
windows, floors, and so on

e (Cognitive architecture: overall structures: essential
diviSions of modules, essential relations between
[OAUIeS; basic representations, essential algorithms,
anaiavariety of other aspects within modules

SR Omponential processes of cognition
saRelatively invariant across time, domain, and individual
2 %ﬂqlly and mechanistically well defined




‘ What is a Cognitive
R * Architecture?

Functions (in relation to cognitive science and in relation to Al):

e |0 provide an essential framework to facilitate more detailed
modeling and exploration of various components of the mind --
mechanisms and processes

s specifying computational models of cognitive mechanisms and
Drocesses

seembodying theories/descriptions of cognition in computer
programs
SENOIOrovide the underlying infrastructure for building intelligent
SysStems
PlINCluding a variety of capabilities, modules, and subsystems
plementing understanding of intelligence gained from

StUOVIRGRAEINUMan mind -- more cognitively grounded
| Mgaru systems




Why are Cogriiye
B> Architectures Importantior
V e Cognitive Science?

s Rsychologically oriented cognitive architectures:
sntelligent® systems that are cognitively realistic;
gdetalled cognitive theories that have been tested
tAreughicapturing and explaining psychological data;
anadso a
SIEVIneIpto shed new light on human cognition and
ANEreioretthey are useful tools for advancing the
| D

SGIENCE Of cognition
MEyamalaserve as a foundation for understanding
QQWHUH an behavior and social phenomena
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- Why are Coghitive
Architectures Importantior

Cognitive Science?

Force one to think in terms of process and in terms of
mechanistic detail

Require that important elements of a theory be spelled out
oX iﬁﬁy, thus leading to conceptually clearer theories

Provide a deeper level of explanation, not centered on
SUperiicial; high-level features of a task
geadounified explanations for a large variety of cognitive
datasand cognitive phenomena

DEVEIOPINg generic models of cognition (capable of a wide
BRoeIoficognitive functionalities) helps to avoid the
MyopITOMIERIeWIy-scoped research

==mNewell (f990), Sun (2002, book published by Erlbaum)
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o - Still Room for Grand
P Theories:

s S0me have claimed that fundamental scientific
gdiscovery and grand scientific theorizing have become
arthing of the past. What remains to be done is filling in

getalls:

Researchers in cognitive science are pursuing

[Ategrativerapproaches that explain data in multiple

eVvelsirdomains, and functionalities

Signicantadvances may be made through

AVPBINESIZzing and confirming deep-level principles that

spuasuperificial explanations across multiple domains

arenitectures can be the basis of such unified
SEEere.g., Sun 2002, the Erlbaum book)




BCLARION: An Examploor

P e Cognitive Architecture

sMANintegrative cognitive architecture, consisting
offa‘number of distinct subsystems

e Aldual-representational structure in each
subsystem (implicit versus explicit
[epresentations)

SISEISUIBSYStems include: the action-centered

SEPSYsStem (the ACS), the non-action-centered

Supsystem (the NACS), the motivational

SUBBYSiema(the MS), and the meta-cognitive

Subsystemi(the MCS)
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Overview of CLARIGIN

s Eachsubsystem consists of two “levels” of representation
==="{hatIs, a dual-representational structure
e [hetop “level” encodes explicit knowledge
e [ihe bottom “level” encodes implicit knowledge
sseEssentially;it'is a dual-process theory of mind (Chaiken
andilirope 1999)
ERREDEeN(1989), Seger (1994), Cleeremans et al (1998), Sun (2002)

S alityaorrepresentation: extensively argued in Sun et al.
20053N Psychological Review)

ERIWGReVels” interact, for example, by cooperating in

:36,‘ijmpd piearning




ACS

NACS

action=centered

explicit representation

!

action=centered implicit

epresentsaton

non=ia¢ Bon-ce ntered

explicit representateon

) ]

non=acron=ce ntered

IMPliCIt representation

goal structure

drives

reinforcement

goal setting

hiltenng
sclecton

regulation
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Essential Characteristics

& —

sinedichotomy of implicit and explicit cognition

s [INEfocus on the cognition-motivation-environment
Interaction

s inerconstant interaction of multiple subsystems,
[AVoeIVIngmplicit cognition, explicit cognition,
Motive -|3n, meta-cognition, and so on
BIARIOGNCan learn on its own, regardless of
WREThErthere is a priori or externally provided
gemainknowledge, while it does not exclude

eDIasesMinnate behavioral propensities, prior




=" clctching Some Detoils
of the Subsystems

o [he Action-Centered Subsystem
o [he Non-Action-Centered Subsystem
o [Ihe Motivational Subsystem
siihedVeta-Cognitive Subsystem
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=" clctching Some Detoils
of the Subsystems

siihe Action-Centered Subsystem
o " [[he Non-Action-Centered Subsystem
o [he Motivational Subsystem

siiheNMeta-Cognitive Subsystem

.
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The Action-Centeréad:
9 Subsystem

sinitherbottom level of the action-centered subsystem,
Implicitireactive action routines are formed/learned:

s \/alues and reinforcement learning

o Modularity

s EsSsSential to and primary in cognition (Sun 2002)
sHINNneNoplevel of the action-centered subsystem,
exXplicitaction knowledge is captured in the form of
EXPlICISYmbolic rules and learned through a variety
Dfimeans

. SRSEERSUNEal (2001, Cognitive Science) and Sun

Q.Whn' al Specification) for details
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- The Action-Centeréed
Subsystem

With¥regard to explicit knowledge at the top level:

&

e Bottom-up learning
e [op-down learning
silndepenadent hypothesis testing learning of explicit

Knowledge
s R@Iersiorms of learning

N




The Action-Centeréa.
Subsystem

. ,‘_.
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,‘-\.ulgngu—e US generation of grounded explicit conceptual
Structures
s [hebasic process of bottom-up learning:

jansactionimplicitly decided by the bottom level is successful, then the
agentextractstan explicit rule that corresponds to the action selected by the
pottomileveliand adds the rule to the top level. Then, in subsequent
Ateractonswiththe world, the agent verifies and modifies the extracted rule
QyaconsIdering the outcome of applying the rule: if the outcome is not
SUCCESSitlRthen the rule should be made more specific and exclusive of the
SUrentcase; i the outcome is successful, the agent may try to generalize the

rOeNoRnakedianore universal.
mmn




The Action-Centered.

B 4 * Subsyste

s Botiom-=up learning: A kind of “rational” (and explicit)
reconstruction of implicit knowledge

e “Afterexplicit rules have been learned, a variety of
explicitreasoning may be performed --- Sun (2003)

sEXPliciknowledge at the top level: Enhance skilled
PErIormance,; facilitate verbal communication, and so
e)f)

searningexplicit representations at the top level can

PETUS geenhancing learning at the bottom level ---
sun%m )ISUn et al (2005)




, The Action-Centered
& 2 * Supbsyste

AsSsimilation of externally given conceptual structures

s CI'ARION can learn even when no a priori or externally provided
explicit knowledge is available

J }-L)" eVer, it can make use of it when such knowledge is available

° prowded Knowledge, in the forms of explicit conceptual
31; ctires\(such as rules, plans, categories, and so on), can

gIvecombined with existent conceptual structures at the top
evel
2yperassimilated into implicit reactive routines at the bottom
evel

. ‘l‘m.yailgl(;:)s:) issknown as top-down learning




=" clctching Some Detoils
of the Subsystems
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s ihe Action-Centered Subsystem

o [[he Non-Action-Centered

SUBSystem
siheNVotivational Subsystem
sleENVeta-Cognitive Subsystem

.




The Non-Aclion=
Centered Subsyste

ssepresenting general knowledge about the
World=-- that Is, the “semantic” memory
(Quillian 1968)
sRRErforming various kinds of memory retrievals
dndinierences
sNGeRine control of the action-centered
SUBSYStem (through its actions)

-




The Non-Action®
Centered Subsyste

s NAThebottom level, “associative memory” networks
encode implicit non-action-centered knowledge, with
distributed representation of microfeatures

s ATINhe top level, a general knowledge store encodes
explicit'non-action-centered knowledge

sVithisymbolic/localist representation of concepts, i.e., chunks (linked to
microfeatures)

SENANNOCENS Set up In the top level to represent a chunk (a concept), and
CONNECISHO Its corresponding microfeatures (distributed representation) in

the bottom level

e op level, links between chunk nodes encode

assocanenspeiween pairs of chunks (concepts) ---
L ;1-3-30%2&9 ‘ules




The Non-Aclion=
Centered Subsyste

s Similarity-based reasoning may be employed
s During reasoning, a known (given or inferred) chunk may be
automatically compared with another chunk. If the similarity

petween them is sufficiently high, then the latter chunk is
inferred.

sllViixedirule-based and similarity-based reasoning

pNACCOUNtiNg for a large variety of human everyday
- gommonsense reasoning patterns (including “inheritance
(=jelgligley)
MESEEISUN (1994, book published by Wiley), and Sun (1995,

' ANtifisialdntelligence)

/,,"




The Non-Actionz
Centered Subsyster
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o Bottom-up learning
o [iop-down learning
o Other forms of learning

.
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" Sketching Some Details
of the Subsystems

/'/
e

o [he A '|dn-Centered Subsystem
o [he Non-Action-Centered Subsystem

silihe Motivational Subsystem
sllineNMeta-Cognitive Subsystem

.




, The Motivational
& 2 * Supsyste

s StiSiconcerned with why an agent does what 1t does. Simply
Sayingthatan agent chooses actions to maximize gains,
rewards; reinforcements, or payoifs leaves open the question of
what determines these things

Privesiand their interactions lead to actions (Toates 1986)

s liprovides the context in which the goal and the
[einiorecement of the action-centered subsystem are set

AvIpartiieNdual-representational) system of motivational
‘lepresentations:
BEXplicit goals vs. drive states

b neexpliciNgeals of an agent may be generated based
| W\al drive states




, The Motivational
e * Supsyste

s low-level primary drives (mostly physiological): hunger,
thirst, physical danger, ....
s Hign=level primary drives (mostly social): seeking of social
approval, striving for social status, desire for
reciprocation, .....
o Secondary (derived) drives
slheresare also “derived” drives, which are secondary,
ghangeable, and acquired mostly in the process of satisfying
orimary drives
METVed drives may include: (1) gradually acquired drives,
IreueARconditioning”; (2) externally set drives, e.g., through

Wy JIVen instructions

7
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The Motivational
Subsyste

sBANgeneralized notion of “drive”
oL ESsential desiderata (Tyrell 1993, Toates
1986, Hull 1943, Sun 2003)

siStrengthilevels of drives: Determined by
eguations derived from essential desiderata
s SUN2003)

N—
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" Sketching Some Details
of the Subsystems

& -
sinerAction-Centered Subsystem
s [he Non-Action-Centered Subsystem

o Ihe Motivational Subsystem
saleNVieta-Cognitive Subsystem

.




- The Meta-Cognitivée
Subsyste

shlVleta=cognition refers to “one’s knowledge
CONCErning one’s own cognitive processes
andproducts® and the control and regulation

ofithem (Elavell 1976)
=S chwartzand Shapiro (1986), Metcalfe and Shimamura (1994),
Rederi(i1996), Mazzoni and Nelson (1998)

R eguiates not only goal structures but also
SOENIlIVe processes per se

-




, The Meta-Coagnitive
e * Supsyste

(1) behavioral aiming:
Setting of reinforcement functions
of goals

(2) information filtering:
[ocusing ofinput dimensions in the ACS
[OcUSINgof input dimensions in the NACS

[B)information acquisition:
Selection of learning methods in the ACS
SElection of learning methods in the NACS

Eaniormation utilization:

. SEIECLON"OWEasoning methods in the top level of the ACS

e cleclion ofeasoning methods in the top level of the NACS
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] The Meta-Cognitive
Subsyste

() outcome selection:
Selection of output dimensions in the ACS
selection of output dimensions in the NACS
(6) cognitive modes:
Selection of explicit processing, implicit processing, or a
gombination thereof (with proper integration parameters),
n'the ACS
parameters of the ACS and the NACS:
Seilinglof parameters for the IDNs
SelliNgof parameters for the ARS

Settngoparameters for the AMNs
L @I@pm: eters for the GKS
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00 Many MechaniSmisy.

r 4 ”

e VArethere too many specialized mechanisms?
s General “semantic” memory in both implicit and explicit forms (in the non-
action-centered subsystem, for general knowledge)

e Episodic memory (in the non-action-centered subsystem)

s Procedural memory in both implicit and explicit forms (in the action-centered
subsystem)

sIWorking memory (in the action-centered subsystem)

SIS 0alistructures (in the action-centered subsystem)

slngeneral " CLARION is grounded in existing
PSyenological theories (Sun 2002), constitutes a
gemprenensive psychological theory, is reasonably

. Cc)mc:(ic Bladamatches a wide range of psychological
6 “ @
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Differences with ACTER

o

s ACIERNS NOt'meant for autonomous learning, without a lot of a

D

2

CLARION makes a principled distinction between explicit and
implicit knowledge/learning:
J A

does not directly capture the distinction and the interaction between

plicit and explicit cognitive processes;
e A R provides no direct explanation of synergy effects between the two types
of Knowledge/learning (Sun et al. 2005).

priorknowledge; it does not directly capture the psychological
processiorbottom-up learning as CLARION does.

BIFARIONNS capable of automatic and ‘effortless’ similarity-
pasedreasoning, while ACT-R has to use cumbersome pair-
MISEsSimilarity relations.
CIARIONSESENgENeral functional approximation capability (in
1tS DO el Fwhile ACT-R does not.
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- Differences with ACTE

s MATACT-R, there is no built-in modeling of motivational
processes (as in CLARION) --- goals are externally
set'and directly hand-coded.

o INTACI-R, there is no built-in sophisticated meta-
cognitive process (as in CLARION).
sAGIERINGS Some detailed sensory-motor modules

i NACIPARION currently does not include.

SGIARIONaNnd ACT-R often account for different
@SKSaltnough there have been some overlaps also.

I




Differences with SG
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e In :’jg);]r; ;—3 arge amount of initial (a priori) knowledge is required, and
(huSno autonomous learning and no bottom-up learning.

e Soarmakes no distinction between explicit and implicit knowledge and
learningi(and its learning is based on specialization using only
Symbolic representations).
INISOarstheres no built-in modeling of the psychological process of
(ReNnteracuoniand synergy between explicit and implicit processes.

slnISoarmnerens no distinction between symbolic/localist and
giStiputedrepresentations. Nor is there general function approximation
canpzli)nlliy

SENTRBESIOEMbody similarity-based reasoning processes directly.
[n Soar, therews no pUIlt-In motivational process. Nor is there built-in
*COognitive process.
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AGCouUNting for Cognitive Datas
pEasissimulations using CLARION

o Process control tasks
s Berry & Broadbent (1988)
o Stanley et al. (1989)
o Dienes & Fahey (1995)
e Serial reaction time tasks
s | ‘ewicki et al. (1987)
N GUrran & Keele (1993)
SATHITICIallgrammar learning tasks

sDOomangue et al. (2004)
.

/£

AlphiaveusEnthmetic (letter counting) tasks
e Rab gizasGoldberg (1995)
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, AGrounting for Cognitive Datas
pEasissimulations using CLARION

o [ower of Hanoi
** Gagne & Smith (1962)

e (Categorical inference tasks
e Sloman (1998)

e Discovery tasks
o Bowers et al. (1990)
s Minefield navigation
™ Sun et al. (2001)
s cKIof knowledge” inferences
G eniner & Collins (1991)

/£

Wesmonitoring




AGCGO Inting for CognitiverDaias
18]I ulat/ons using CLARION

C CARCAC W10 L0 \W

- #rFas
£ wemm\lotivatic
o | .ambert et al. (2003)
o Social s ations
s Organizational decision making: Carley et al. (1998)
e Scientific productivity: Simon (1957); Gilbert (1997)
s Survival of tribal societies: Cecconi & Parisi (1998)
o Creative problem solving
Smith & Vela (1991)
- Y aniv & Meyer (1987)
S UrSO et al. (1994)
IS chooler et al. (1993)

'/.
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. Focusicapturinggheiinteraction, and the resulting synergy, using
‘ma M=up learning




# Jnﬂ (Bad LISHIGCAL OIS
=" and ImplicaticiSieIg
CLARION --- some’rers

£ s RESUN; Duality of the Mind. Lawrence Erlbaum Associates,

Mahwah, NJ. 2002.

* R.Sun,

Integrating Rules and Connectionism for Robust Commonsense
Reasoning. John Wiley and Sons, New York. 1994,

S RESUNPPSS|usarz, and C. Terry, The interaction of the explicit and
neamplicitin skill learning: A dual-process approach. Psychological

REVIEWV0I:112, No.1, pp.159-192. 2005.

RESUNNENVerrill, and T. Peterson, From implicit skills to explicit

gnowledges A bottom-up model of skill learning. Cognitive Science,
98N0.2, pp.203-244. 2001.

OPESIEasoning: Integrating rule-based and similarity-
gINg > Artificial Intelligence. Vol.75, No.2, pp.241-296.
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~ Technical DetallSyors
CLARION

o’
.

&F < -
SRR UNWANYETailed Specification of CLARION 5.0. Technical

report:2003. (It contains detailed technical specifications of
CLARION 5.0.)

e Addendum 1:
he enhanced description of the motivational subsystem.

Addendum 2:
lhe‘enhanced description of similarity-based reasoning.
sNAddendum 3: The properties of the CLARION-H implementation.
s Addendum 4: Q and A.
saANuchssimplified description of CLARION 5.0, written by a
Stidentias a project report (which only provides some general

o

ceESymRsslolfied Introduction to CLARION 5.0. Technical

!gggjii alllii




Conclusion: WHatis
CLARION-

I

Afcomprehensive theory of cognition (as broadly
Atconceptual framework for analyzing cognition
(Various functionalities and tasks)
AScomputational modeling framework for simulating
pSychological data
ARSEROfSImulation programming tools (Java
erle Gl
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Outline  oiRuhE
. 1 Remainder ol
y Lutorial

s [ine"Action-Centered Subsystem (135 min.)

o Nick Wilson, Sébastien Hélie

o [he Non-Action-Centered Subsystem (90 min.)

o Sebastien Hélie

siliheNMotivational Subsystem and the Meta-Cognitive
SUpsystem (60 min.)

b\ cK Wilson

ENNEICIPARION software: the Java package (30 min.)

' » SI\[GKE J‘| Sef
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End of Partsis
Introductic

Any:general questions at this point?

(details to follow)

.




